
Week 7: Advanced Loops

Gaddis: 5.7-12 

CS 1428 
Fall 2015 

Jill Seaman

1

Loops in C++  
(review)

2

• while  

‣ if expression is true, statement is executed, repeat 

• for  

‣ equivalent to:  

• do while

while (expression)
   statement

for (expr1; expr2; expr3)
   statement

do
   statement
while (expression);

expr1;
while (expr2) {
   statement
   expr3;
}

statement is executed. 
if expression is true, then repeat

statement may be a 
compound statement 
(a block: {statements})

Q1

Common tasks solved 
using loops

3

! Counting 
! Summing 
! Calculating an average (the mean value) 
! Read input until “sentinel value” is encountered 
! Read input from a file until the end of the file is 

encountered

Counting 
(review)

4

! set a counter variable to 0 
! increment it inside the loop (each iteration) 
! after each iteration of the loop, it stores the # of 

loop iterations so far
int number;
int count = 0;

cout << “Enter a number between 1 and 10: “;
cin >> number;

while (number < 1 || number > 10) {
   count = count + 1;
   cout << “Please enter a number between 1 and 10: “;
   cin >> number;
}

cout << count << “ invalid numbers entered “ << endl;

// Do something with number here  



5

! After each iteration of the loop, it stores the sum 
of the numbers added so far (running total)  

! set an accumulator variable to 0 
! add the next number to it inside the loop 

int days;           //Count for count-controlled loop
float total = 0.0;  //Accumulator
float miles;        //daily miles ridden

cout << “How many days did you ride your bike? “;
cin >> days;

for (int i = 1; i <= days; i++)  {
   cout << “Enter the miles for day “ << i << “: ”;
   cin >> miles;
   total = total + miles;
} 

cout << “Total miles ridden: “ << total << endl;

5.7 Keeping a running total 
(summing)

total is 0 first time through

Keeping a running total

6

• Output: 

• How would you calculate the average mileage?

How many days did you ride you bike? 3
Enter the miles for day 1: 14.2
Enter the miles for day 2: 25.4
Enter the miles for day 3: 12.2
Total miles ridden: 51.8

Q2

7

! sentinel: special value in a list of values that 
indicates the end of the data 

! sentinel value must not be a valid value! 
-99 for a test score, -1 for miles ridden 

! User does not need to count how many values 
will be entered 

! Requires a “priming read” before the loop starts 
‣ so the sentinel is NOT included in the sum 

‣ the loop can be skipped (if first value is the sentinel)

5.8 Sentinel controlled loop Sentinel example

8

• Example: 

• Output:

float total = 0.0;  //Accumulator
float miles;        //daily miles ridden

cout << “Enter the miles you rode on your bike each day, “;
cout << “then enter -1 when finished. “ << endl;

cin >> miles;              //priming read
while (miles != -1)  {
   total = total + miles;  //skipped when miles==-1
   cin >> miles;           //get the next one
} 

cout << “Total miles ridden: “ << total << endl;

Enter the miles you rode on your bike each day,
then enter -1 when finished.
14.2
25.4
12.2
-1
Total miles ridden: 51.8



5.9 Which Loop to use?
! Any loop can work for any given problem 
! while loop:  
‣ test at start of loop, good for:  

‣ validating input, sentinel controlled loops, etc. 

! for loop:  
‣ initialize/test/update, good for: 

‣ count-controlled loops 

! do-while loop 
‣ always do at least once, good for: 

‣ repeating on user request, simple menu processing9

5.10 Nested loops

10

! When one loop appears in the body of another 
! For every iteration of the outer loop, we do all 

the iterations of the inner loop 
! Example from “real life”: 
! A clock.  For each hour in a day (24), we iterate 

over 60 minutes.
12:00      1:00      2:00      3:00
12:01      1:01      2:01      .
12:02      1:02      2:02      .
...        ...       ...       .
12:59      1:59      2:59      .

Print a bar graph

11

• Input numbers from a file.  For each number, 
output that many asterisks (*) in a row. 
 
 
 
 
  

• numbers.txt:               Output:  

int number;
ifstream inputFile;
inputFile.open(“numbers.txt”);
inputFile >> number;  //priming read
while (number!=-1) {
   for (int i = 1; i <= number; i++)
      cout << ‘*’;
   cout << endl;
   inputFile >> number;
}

********
***
******
**********

8
3
6
10
-1

Calculate grades for a class

12

int numStudents, numTests;
cout << “How many students? “;
cin >> numStudents;
cout << “How many test scores? “;
cin >> numTests;
for (int student=1; student <= numStudents; student++) {
   float total = 0, score;
   cout << “Enter the “ << numTests 
        << “ test scores for student ” << student << endl;
   for (int test=1; test <= numTests; test++) {
      cin >> score;
      total = total + score;
   }
   float avgScore = total/numTests;
   cout << “Average for student” << student 
        << “ is: “ << avgScore << endl;
}

For each student, input the test scores from the 
user and output the average.

Inner loop

Outer loop



Calculate grades for a class

13

• Output:

How many students? 3
How many test scores? 4
Enter the 4 test scores for student 1
88 90.5 92 77.5
Average for student1 is: 87.0
Enter the 4 test scores for student 2
66.5 70.5 80 86
Average for student2 is: 75.8
Enter the 4 test scores for student 3
99 93.5 80 79
Average for student3 is: 87.9

Q3

5.11 More File I/O

14

• Can test a file stream variable as if it were a 
boolean variable to check for various errors. 

• After opening a file, if the open operation failed, 
the value of file stream variable is false. 

• Note: after ANY input operation, if it fails, the value of file stream 
variable will then be false.

ifstream infile;
infile.open("test.txt");

if (!infile) {
    cout << "File open failure!";
    return 1;  //abort program!
}

Reading data from a file

15

• Use fin>>x; in a loop 
• Problem: when to stop the loop? 
• First entry in file could be count of number of 

items 
‣ problems: maintenance (must update it whenever data is 

modified), large files (might be hard to count) 

• Could use sentinel value 
‣ problem: may not be one (someone might delete it), 

maintenance 

• Want to automatically detect end of file

Using >> to detect end of file

16

! stream extraction operation (>>) returns true 
when a value was successfully read, false 
otherwise 

! inputFile >> num: 
‣ tries to read a value into num 

‣ if it was successful, result is true (foundValue is true) 

‣ if it failed (non-number char or no more input), result is false 
(foundValue is false, but the value in num does not change!)

int num;
ifstream inputFile;
inputFile.open(“numbers.txt”);

bool foundValue = (inputFile >> num);



Using the result of >>

17

• Example: 
 
 
 

• Can also use directly as relational expression:

int number;
ifstream inputFile;
inputFile.open(“numbers.txt”);

bool foundValue = (inputFile >> number);

if (foundValue)
   cout << “The data read in was: “ << number << endl;
else
   cout << “Could not read data from file.” << endl;

if (inputFile >> number)
   ...

Sum all the values in the file 
without using a count or sentinel value

18

• Code: 

• numbers.txt:         Output:  

int number;
ifstream inputFile;
inputFile.open(“numbers.txt”);

int total = 0;
while (inputFile >> number) {
   total = total + number;
}

cout << “The sum of the numbers in the file: “ << total 
     << endl;

The sum of the numbers in the file: 344 84
32
99
77
52

puts the priming read directly 
in the test expression

5.12 Breaking and Continuing

19

• Sometimes we want to abort (exit) a loop before 
it has completed. 

• The break statement can be used to terminate 
the loop from within: 
 
 
 
 

• Don’t do this.  It makes your code hard to read 
and debug.

cout << “Guess a number between 1 and 10” << endl;
int number;
while (true) {
   cin >> number;
   if (number == 8)
      break;
}
cout << “You got it.” << endl;

Stopping a single iteration

20

• Sometimes we want to abort an iteration (skip 
to the end of loop body) before it is done. 

• The continue statement can be used to 
terminate the current iteration: 
 
 
 

• Output:  
• Don’t do this either.  It makes your code hard to 

read and debug.

for (int i=1; i <= 6; i++) {
   if (i == 4)
      continue;
   cout << i << “ “;
}

1 2 3 5 6

Q4



Programming Assignment 4.5 
Practice only, don’t submit

21

• Rewrite PA3, Prepare a Lab Report, so that it 
uses a loop to enter the data for any number of 
rats (ask the user to specify the number of rats 
before the loop starts). 
‣ Then rewrite it to take the input from a file (do not input the 

number of rats, just loop until the end of the file). 

• Rewrite PA4, Calculate a Cell Phone Bill, to ask 
the user if they want to repeat the program after 
the bill and savings are output.  Also put the 
input validation in a loop. 


