Recursion

Week 10
Gaddis: 19.1-19.5

CS 5301
Fall 2015
Jill Seaman

What is recursion?

- Generally, when something contains a reference to itself
- Math: defining a function in terms of itself
- Computer science: when a function calls itself:

```cpp
void message() {
    cout << "This is a recursive function.\n";
    message();
}
int main() {
    message();
}
```

What happens when this is executed?

How can a function call itself?

- Infinite Recursion:

 This is a recursive function.
 ...
Tracing the calls

- 6 nested calls to message:

 message(5):
 - outputs “This is a recursive function”
 - calls message(4):
 - outputs “This is a recursive function”
 - calls message(3):
 - outputs “This is a recursive function”
 - calls message(2):
 - outputs “This is a recursive function”
 - calls message(1):
 - outputs “This is a recursive function”
 - calls message(0):
 - does nothing, just returns

- depth of recursion (#times it calls itself) = 5

How to write recursive functions

- Branching is required (If or switch)
- Find a base case
 - one (or more) values for which the result of the function is known (no repetition required to solve it)
 - no recursive call is allowed here
- Develop the recursive case
 - For a given argument (say n), assume the function works for a smaller value (n-1).
 - Use the result of calling the function on n-1 to form a solution for n

Recursive function example

factorial

- Mathematical definition of n! (factorial of n)

 if n=0 then n! = 1
 if n>0 then n! = 1 x 2 x 3 x ... x n

- What is the base case?
 - n=0 (the result is 1)

- Recursive case: If we assume (n-1)! can be computed, how can we get n! from that?
 - n! = n * (n-1)!

Recursive function example

factorial

```cpp
int factorial(int n) {
    if (n==0)
        return 1;
    else
        return n * factorial(n-1);
}

int main() {
    int number;
    cout << “Enter a number “;
    cin >> number;
    cout << “The factorial of “ << number << “ is “
         << factorial(number) << endl;
}
```
Tracing the calls

- Calls to factorial:

 factorial(4):
 return 4 * factorial(3); \= 4 * 6 = 24
 calls factorial(3):
 return 3 * factorial(2); \= 3 * 2 = 6
 calls factorial(2):
 return 2 * factorial(1); \= 2 * 1 = 2
 calls factorial(1):
 return 1 * factorial(0); \= 1 * 1 = 1
 calls factorial(0):
 return 1;

- Every call except the last makes a recursive call
- Each call makes the argument smaller

Recursive functions: ints and lists

- Recursive functions over integers follow this pattern:

 \[
 \text{type } f(\text{int } n) \{ \\
 \quad \text{if } (n==0) \quad \text{// do the base case} \\
 \quad \text{else} \\
 \quad \quad \text{// ... } f(n-1) \ldots \\
 \}
 \]

- Recursive functions over lists (arrays, linked lists, strings) use the length of the list in place of \(n \)
 - base case: if (length==0) ... // empty list
 - recursive case: assume f works for list of length n-1, compute the answer for a list with one more element.

Recursive function example

sum of the list

- Recursive function to compute sum of a list of numbers
- What is the base case?
 - length=0 (empty list) \(\Rightarrow \) sum = 0
- If we assume we can sum the first n-1 items in the list, how can we get the sum of the whole list from that?
 - \(\text{sum (list) } = \text{sum (list[0]..list[n-2]) } + \text{list}[n-1] \)

 Assume I am given the answer to this

Recursive function example

sum of a list (array)

\[
\text{int } \text{sum(int a[], int size)} \{ \quad \text{// size is number of elems} \\
\quad \text{if } (\text{size==0}) \\
\quad \quad \text{return } 0; \\
\quad \text{else} \\
\quad \quad \text{return } \text{sum(a,size-1)} + \text{a[size-1]}; \\
\}
\]

For a list with size = 4: \(\text{sum(a,4)} \)

\[
\begin{align*}
\text{sum(a,3) } + \text{a[3]} & = \\
\text{sum(a,2) } + \text{a[2] } + \text{a[3]} & = \\
\text{sum(a,1) } + \text{a[1] } + \text{a[2] } + \text{a[3]} & = \\
\text{sum(a,0) } + \text{a[0] } + \text{a[1] } + \text{a[2] } + \text{a[3]} & = \\
\end{align*}
\]

Recursive function example
count character occurrences in a string

• Write a recursive function to count the number of times a **specific** character appears in a string
• We will use the string member function `substr` to make a smaller string
 - `string str.substr (int pos, int length);`
 - Returns a newly constructed string object containing the portion of `str` that starts at character position `pos` and spans `len` characters (or until the end of the string, whichever comes first).

```cpp
string x = "hello there";
cout << x.substr(6,3) << endl; // Output: "the"
cout << x[4] << endl; // Output: 0
```

Recursive function example
greatest common divisor

• Greatest common divisor of two non-zero ints is the largest positive integer that divides the numbers evenly (without a remainder)
• This is a variant of Euclid’s algorithm:
 \[
 \text{gcd}(x,y) = \begin{cases}
 y & \text{if } x/y \text{ has no remainder} \\
 \text{gcd}(y, \text{remainder of } x/y) & \text{otherwise}
 \end{cases}
 \]
• It’s a recursive definition, correctness is proven elsewhere.

```cpp
int gcd(int x, int y) {
    if (x % y == 0) {
        return y;
    } else {
        return gcd(y, x % y);
    }
}
```

Recursive function example
count character occurrences in a string

• This example is different from how the book does it.
• I use `substr` to remove the first character to make the recursive call on a shorter string.

```cpp
int numChars(char target, string str) {
    if (str.empty()) {
        return 0;
    } else {  // make recursive call, then modify the results:
        int result = numChars(target, str.substr(1,str.size()-1));
        if (str[0]==target)
            return 1+result;
        else
            return result;
    }
}
```

```cpp
int main() {
    string a = "hello";
    cout << a << " " << numChars('l',a) << endl;
}
```
Recursive function example

Fibonacci numbers

- Series of Fibonacci numbers:
 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

- Starts with 0, 1. Then each number is the sum of the two previous numbers
 \[F_0 = 0 \]
 \[F_1 = 1 \]
 \[F_i = F_{i-1} + F_{i-2} \quad (\text{for } i > 1) \]

- It's a recursive definition
  ```c
  int fib(int x) {
    if (x==0 || x==1)
      return x;
    else
      return fib(x-1) + fib(x-2);
  }
  ```

Note: the recursive fibonacci functions works as written, but it is VERY inefficient.

Counting the recursive calls to fib:

The first 40 fibonacci numbers:
- \(\text{fib}(0) = 0 \) # of recursive calls to \(\text{fib} \) = 1
- \(\text{fib}(1) = 1 \) # of recursive calls to \(\text{fib} \) = 1
- \(\text{fib}(2) = 1 \) # of recursive calls to \(\text{fib} \) = 3
- \(\text{fib}(3) = 2 \) # of recursive calls to \(\text{fib} \) = 5
- \(\text{fib}(4) = 3 \) # of recursive calls to \(\text{fib} \) = 9
- \(\text{fib}(5) = 5 \) # of recursive calls to \(\text{fib} \) = 15
- \(\text{fib}(6) = 8 \) # of recursive calls to \(\text{fib} \) = 25
- \(\text{fib}(7) = 13 \) # of recursive calls to \(\text{fib} \) = 41
- \(\text{fib}(8) = 21 \) # of recursive calls to \(\text{fib} \) = 67
- \(\text{fib}(9) = 34 \) # of recursive calls to \(\text{fib} \) = 109
- ...
- \(\text{fib}(40) = 102,334,155 \) # of recursive calls to \(\text{fib} \) = 331,160,281

Recursive functions over linked lists

- Member functions of a linked list class can be defined recursively.
 - These functions take a pointer to a node in the list as a parameter
 - They compute the function for the list starting at the node \(p \) points to.

- The pattern:
 - base case: empty list, when \(p \) is NULL
 - recursive case: assume \(f \) works for list starting at \(p->\text{next} \), what is the answer for the list starting at \(p \)? (it has one more element).
Recursive function example

count the number of nodes in a list

// the private version, has a pointer parameter
// How many nodes are in the list starting at the pointer?
int NumberList::countNodes(ListNode *p) {
 if (p == NULL)
 return 0;
 else
 return 1 + countNodes(p->next);
}

// the public version, no arguments (Nodes are private)
// calls the recursive function starting at head
int NumberList::countNodes() {
 return countNodes(head);
}

Note that this function is overloaded

Recursive function example

display the node values in reverse order

// the private version, needs a pointer parameter
void NumberList::reverseDisplay(ListNode *p) {
 if (p == NULL) {
 // do nothing
 } else {
 // display the “rest” of the list in reverse order
 reverseDisplay(p->next);
 cout << p->value << " ";
 }
}

// the public version, no arguments
void NumberList::reverseDisplay() {
 reverseDisplay(head);
 cout << endl;
}

Linked List example:

- Append x to the end of a singly linked list:
 - Pass the node pointer by reference
 - Recursive

void List::append (double x) {
 append(x, head);
}

void List::append (double x, Node *&p) {
 if (p == NULL) {
 p = new Node();
 p->data = x;
 p->next = NULL;
 } else {
 append (x, p->next);
 }
}

Why use recursion?

- It is true that recursion is never required to solve a problem
 - Any problem that can be solved with recursion can also be solved using iteration.
- Recursion requires extra overhead: function call + return mechanism uses extra resources

However:

- Some repetitive problems are more easily and naturally solved with recursion
 - the recursive solution is often shorter, more elegant, easier to read and debug.