





- **Preorder:** print node value, process left tree, then right
- **Postorder:** process left tree, then right, then print node value [abc\*+de\*f+g\*+]
- Inorder: process left tree, print node value, then process right tree a+b\*c+d\*e+f\*g

#### **Binary Trees: implementation**

• Structure with a data value, and a pointer to the left subtree and another to the right subtree.



- Like a linked list, but two "next" pointers.
- There is also a special pointer to the root node of the tree (like head for a list).

4

TreeNode \*root;

#### Binary Search Trees

- A special kind of binary tree, used for efficient searching, insertion, and deletion.
- <u>Binary Search Tree property</u>: For every node X in the tree:
  - All the values in the **left** subtree are **smaller** than the value at X.
  - All the values in the **right** subtree are **larger** than the value at X.
- Not all binary trees are binary search trees
- An inorder traversal of a BST shows the values in sorted order

#### **Binary Search Trees: operations**

- insert(x)
- remove(x) (or delete)
- isEmpty() (returns bool)
  - if the root is NULL
- find(x) (returns bool)
- findMin() (returns <type>)
  - Smallest element is found by always taking the left branch.
- findMax() (returns <type>)
  - Largest element is found by always taking the right branch.



# BST: find(x)

- Pseudocode
- Recursive

bool find (<type> x, TreeNode t) {
 if (isEmpty(t))
 return false
 if (x < value(t))
 return find (x, left(t))
 if (x > value(t))
 return find (x, right(t))
 return true // x == value(t)
}

8

# BST: insert(x)

- Algorithm is similar to find(x)
- If x is found, do nothing (no duplicates in tree)
- If x is not found, add a new node with x in place of the last empty subtree that was searched.

# 

# BST: insert(x)

- Pseudocode
- Recursive

}

9

void insert (<type> x, TreeNode t) {

if (isEmpty(t))
 make t's parent point to new TreeNode(x)

else if (x < value(t))
 insert (x, left(t))</pre>

else if (x > value(t))
 insert (x, right(t))

//else x == value(t), do nothing, no duplicates

# Linked List example:

- Append x to the end of a singly linked list:
  - Pass the node pointer by reference
  - Recursive



# BST: remove(x)

- Algorithm is starts with finding(x)
- If x is not found, do nothing
- If x is found, remove node carefully.
  - Must remain a binary search tree (smallers on left, biggers on right).

12

10



## BST: remove(x)

- Case 3: Node has 2 children
  - Find minimum node in right subtree --cannot have left subtree, or it's not the minimum
  - Move original node's left subtree to be the left subtree of this node.
  - Make parent pointer bypass the original node and point to right subtree



## Binary heap data structure

- A binary heap is a special kind of binary tree
  - has a restricted structure (must be complete)
  - has an ordering property (parent value is smaller than child values)
  - NOT a Binary Search Tree!
- Used in the following applications
  - Priority queue implementation: supports enqueue and deleteMin operations in O(log N)
  - Heap sort: another O(N log N) sorting algorithm.

15

#### Binary Heap: structure property

- Complete binary tree: a tree that is completely filled
  - every level except the last is completely filled.
  - the bottom level is filled left to right (the leaves are as far left as possible).



## **Complete Binary Trees**

- A complete binary tree can be easily stored in an array
  - place the root in position 1 (for convenience)



#### Complete Binary Trees Properties

- In the array representation:
  - put root at location 1
  - use an int variable (size) to store number of nodes
  - for a node at position i:
    - left child at position 2i (if 2i <= size, else i is leaf)
    - right child at position 2i+1 (if 2i+1 <= size, else i is leaf)
    - parent is in position floor(i/2) (or use integer division)

18

## Binary Heap: ordering property

- In a heap, if X is a parent of Y, value(X) is less than or equal to value(Y).
  - the minimum value of the heap is always at the root.



## Heap: insert(x)

- First: add a node to tree.
  - must be placed at next available location, size+1, in order to maintain a complete tree.
- Next: maintain the ordering property:
  - if x is greater than its parent: done
  - else swap with parent, repeat
- Called "percolate up" or "reheap up"
- preserves ordering property



## Heap: deleteMin()

- Minimum is at the root, removing it leaves a hole.
  - The last element in the tree must be relocated.
- First: move last element up to the root
- Next: maintain the ordering property, start with root:
  - if both children are greater than the parent: done
  - otherwise, swap the smaller of the two children with the parent, repeat
- Called "percolate down" or "reheap down"
- preserves ordering property
- O(log n)

22

