Trees (BSTs & Heaps)

Week 12

Gaddis: 20
Weiss: 21.1-3

CS 5301
Fall 2015

Jill Seaman

Tree: non-recursive definition

- **Tree**: set of nodes and directed edges
 - **root**: one node is distinguished as the root
 - Every node (except root) has exactly exactly one edge coming into it.
 - Every node can have any number of edges going out of it (zero or more).

- **Parent**: source node of directed edge
- **Child**: terminal node of directed edge
- **Binary Tree**: a tree in which no node can have more than two children.

Tree Traversals: examples

- **Preorder**: print node value, process left tree, then right
- **Postorder**: process left tree, then right, then print node value
- **Inorder**: process left tree, print node value, then process right tree

Binary Trees: implementation

- Structure with a data value, and a pointer to the left subtree and another to the right subtree.

```c
struct TreeNode {
    <type> data;      // the data
    TreeNode *left;   // left subtree
    TreeNode *right;  // right subtree
};

TreeNode *root;
```

- Like a linked list, but two “next” pointers.
- There is also a special pointer to the root node of the tree (like head for a list).
Binary Search Trees

- A special kind of binary tree, used for efficient searching, insertion, and deletion.
- **Binary Search Tree property:**
 - For every node X in the tree:
 - All the values in the left subtree are **smaller** than the value at X.
 - All the values in the right subtree are **larger** than the value at X.
- Not all binary trees are binary search trees
- An inorder traversal of a BST shows the values in sorted order

Binary Search Trees: operations

- insert(x)
- remove(x) (or delete)
- isEmpty() (returns bool)
 - if the root is NULL
- find(x) (returns bool)
- findMin() (returns <type>)
 - Smallest element is found by always taking the left branch.
- findMax() (returns <type>)
 - Largest element is found by always taking the right branch.

BST: find(x)

Recursive Algorithm:
- If we are searching for 15 we are done.
- If we are searching for a key < 15, then we should search in the left subtree.
- If we are searching for a key > 15, then we should search in the right subtree.

```cpp
bool find(<type> x, TreeNode t) {
    if (isEmpty(t))
        return false
    if (x < value(t))
        return find (x, left(t))
    if (x > value(t))
        return find (x, right(t))
    return true  // x == value(t)
}
```
BST: insert(x)

- Algorithm is similar to find(x)
- If x is found, do nothing (no duplicates in tree)
- If x is not found, add a new node with x in place of the last empty subtree that was searched.

![BST Diagram]

Inserting 13:

```
12
 /   \
5     18
 / \
2  9
 /  \
15  19
```

Pseudocode

Recursive
```
void insert (<type> x, TreeNode t) {
  if (isEmpty(t))
    make t's parent point to new TreeNode(x)
  else if (x < value(t))
    insert (x, left(t))
  else if (x > value(t))
    insert (x, right(t))
  //else x == value(t), do nothing, no duplicates
}
```

BST: remove(x)

- Algorithm is starts with finding(x)
- If x is not found, do nothing
- If x is found, remove node carefully.
 - Must remain a binary search tree (smallers on left, biggers on right).

Linked List example:

- Append x to the end of a singly linked list:
 - Pass the node pointer by reference
 - Recursive

```
void List::append (double x) {
  append(x, head);
}
```
```
void List::append (double x, Node *& p) {
  if (p == NULL) {
    p = new Node();
    p->data = x;
    p->next = NULL;
  }
  else
    append (x, p->next);
}
```

BST: remove(x)

- **Case 1: Node is a leaf**
 - Can be removed without violating BST property

- **Case 2: Node has one child**
 - Make parent pointer bypass the Node and point to that child

![Figure 4.24: Deletion of a node (4) with one child, before and after](image)

Binary heap data structure

- A binary heap is a special kind of binary tree
 - has a restricted structure (must be complete)
 - has an ordering property (parent value is smaller than child values)
 - NOT a Binary Search Tree!

- Used in the following applications
 - Priority queue implementation: supports enqueue and deleteMin operations in O(log N)
 - Heap sort: another O(N log N) sorting algorithm.

Binary Heap: structure property

- **Complete binary tree**: a tree that is completely filled
 - every level except the last is completely filled.
 - the bottom level is filled left to right (the leaves are as far left as possible).

![Figure 4.25: Deletion of a node (2) with two children, before and after](image)
Complete Binary Trees

- A complete binary tree can be easily stored in an array
 - place the root in position 1 (for convenience)

Properties

- In the array representation:
 - put root at location 1
 - use an int variable (size) to store number of nodes
 - for a node at position i:
 - left child at position \(2i\) (if \(2i \leq \text{size}\), else i is leaf)
 - right child at position \(2i+1\) (if \(2i+1 \leq \text{size}\), else i is leaf)
 - parent is in position \(\lfloor i/2 \rfloor\) (or use integer division)

Binary Heap:
ordering property

- In a heap, if \(X\) is a parent of \(Y\), value(\(X\)) is less than or equal to value(\(Y\)).
 - the minimum value of the heap is always at the root.

Heap: insert(\(x\))

- First: add a node to tree.
 - must be placed at next available location, size+1, in order to maintain a complete tree.
- Next: maintain the ordering property:
 - if \(x\) is greater than its parent: done
 - else swap with parent, repeat
- Called “percolate up” or “reheap up”
- preserves ordering property
Heap: `insert(x)`

- Minimum is at the root, removing it leaves a hole.
 - The last element in the tree must be relocated.
- First: move last element up to the root
- Next: maintain the ordering property, start with root:
 - if both children are greater than the parent: done
 - otherwise, swap the smaller of the two children with
 the parent, repeat
- Called “percolate down” or “reheap down”
- preserves ordering property
- \(O(\log n)\)

Heap: `deleteMin()`

- Creation of the hole at the root.
- The next two steps in the `deleteMin` operation.

Figure 21.7: Attempt to insert 14, creating the hole and bubbling the hole up.

Figure 21.8: The remaining two steps required to insert 14 in the original heap shown in Figure 21.7.

Figure 21.10: Creation of the hole at the root.

Figure 21.11: The next two steps in the `deleteMin` operation.

Figure 21.12: The last two steps in the `deleteMin` operation.