
1

Classes and Objects

Week 5

Gaddis: 13.2-13.12  
 14.3-14.4

CS 5301
Fall 2015

Jill Seaman

2

The Class
! A class in C++ is similar to a structure.
! A class contains members:

- variables AND
- functions (often called methods) 

(these manipulate the member variables).
• Members can be:

- private: inaccessible outside the class 
(this is the default)

- public: accessible outside the class.

3

Example class: Time
class declaration with functions defined inline

class Time { //new data type
 private:
 int hour;
 int minute;
 public:
 void setHour(int hr) { hour = hr; }
 void setMinute(int min) { minute = min; }
 int getHour() const { return hour; }
 int getMinute() const { return minute; }
 void display() const { cout << hour << “:” << minute; }
};
int main()
{
 Time t1, t2;

 t1.setHour(6);
 t1.setMinute(30);
 cout << t1.getHour() << endl;

 t2.setHour(9);
 t2.setMinute(20);
 t2.display();
 cout << endl;
}

6
9:20

Output:

4

Using const with member functions

! const appearing after the parentheses in a
member function declaration specifies that the
function will not change any data inside the
object.

! These member functions don’t change hour or
minute.

int getHour() const { return hour; }
int getMinute() const { return minute; }
void display() const { cout << hour << “:” << minute; }

5

Accessors and mutators
! Accessor functions
- return a value from the object (without changing it)
- a “getter” returns the value of a member variable

! Mutator functions
- Change the value(s) of member variable(s).
- a “setter” changes (sets) the value of a member

variable. 

int getHour() const { return hour; }
int getMinute() const { return minute; }

void setHour(int hr) { hour = hr; }
void setMinute(int min) { minute = min; }

6

Access rules
! Used to control access to members of the class
! public: can be accessed by functions inside

AND outside of the class
! private: can be called by or accessed by only

functions that are members of the class (inside)

int main()
{
 Time t1;

 t1.setHour(6);
 t1.setMinute(30);
 cout << t1.hour << endl; //Error, hour is private

};

7

Separation of Interface from
Implementation

! Class declarations are usually stored in their
own header files (Time.h)
- called the specification file
- filename is usually same as class name.

! Member function definitions are stored in a
separate file (Time.cpp)
- called the class implementation file
- it must #include the header file,

! Any program/file using the class must include
the class’s header file (#include “Time.h”) 8

Time class, separate files
// models a 12 hour clock
class Time {

private:
 int hour;
 int minute;

public:
 void setHour(int);
 void setMinute(int);
 int getHour() const;
 int getMinute() const;

 void display() const;
};

Time.h
#include <iostream>
#include "Time.h"
using namespace std;

void Time::setHour(int hr) {
 hour = hr;
}

void Time::setMinute(int min) {
 minute = min;
}

int Time::getHour() const {
 return hour;
}

int Time::getMinute() const {
 return minute;
}

void Time::display() const {
 cout << hour << “:” << minute;
}

Time.cpp

9

Time class, separate files

//Example using Time class
#include<iostream>
#include "Time.h"
using namespace std;

int main() {
 Time t;
 t.setHour(12);
 t.setMinute(58);
 t.display();
 cout <<endl;
 t.setMinute(59);
 t.display();
 cout << endl;
}

Driver.cpp

10

Constructors

• A constructor is a member function with the same
name as the class.
• It is called automatically when an object is created
• It performs initialization of the new object
• It has no return type
• It can be overloaded: more than one constructor

function, each with different parameter lists.
• A constructor with no parameters is the default

constructor.
• If your class defines no constructors, C++ will provide

a default constructor automatically.

11

Constructor Declaration+Definition
! Note no return type, same name as class:

// models a 12 hour clock
class Time {

private:
 int hour;
 int minute;

public:
 Time();
 Time(int,int);

 void setHour(int);
 void setMinute(int);
 int getHour() const;
 int getMinute() const;

 void display() const;
};

#include <iostream>
using namespace std;

#include "Time.h"

Time::Time() {
 hour = 12;
 minute = 0;
}
Time::Time(int hr, int min) {
 hour = hr;
 minute = min;
}
...

Time.cpp

! Called from the object declaration
//Example using Time class
#include<iostream>
#include "Time.h"
using namespace std;

int main() {
 Time t;
 t.display();
 cout <<endl;

 Time t1(10,30);
 t1.display();
 cout << endl;
}

12

Constructor Use

12:0
10:30

Output:

13

Destructors

• Member function that is automatically called when an
object is destroyed
• Destructor name is ~classname, e.g., ~Time
• Has no return type; takes no arguments
• Only one destructor per class, i.e., it cannot be

overloaded, cannot take arguments
• If the class allocates dynamic memory, the destructor

should release (delete) it.
class Time
{
 public:
 Time(); // Constructor prototype
 ~Time(); // Destructor prototype …

14

Composition
! When one class contains another as a member:

#include “Time.h"
class Calls
{
 private:
 Time calls[10]; // times of last 10 phone calls
 // array is initialized using default constructor
 public:
 void set(int,Time);
 void displayAll();
}

#include "Calls.h"
#include <iostream>
using namespace std;

void Calls::set(int i, Time t) {
 calls[i] = t;
}
void Calls::displayAll () {
 for (int i=0; i<10; i++) {
 calls[i].display(); //calls member function
 cout << “ “;
 }
}

Calls.h

Calls.cpp

15

Composition
! Driver for Calls

//Example using Calls and Time classes
#include<iostream>
#include “Calls.h” //this includes “Time.h”
using namespace std;

int main() {
 Calls callTimes;
 Time t1(4,30);
 callTimes.set(0,t1);
 Time t2(11,42);
 callTimes.set(1,t2);

 callTimes.displayAll();
 cout << endl;
}

4:30 11:42 12:0 12:0 12:0 12:0 12:0 12:0 12:0 12:0
Output:

16

Pointers to Objects

! We can define pointers to objects, just like
pointers to structures

! We can access public members of the object
using the structure pointer operator (->)

Time t1(12,20);
Time *timePtr;
timePtr = &t1;

timePtr->setMinute(21);
cout << timePtr->display() << endl;

Output:
12:21

17

Dynamically Allocating Objects

! Objects can be dynamically allocated with new:

! Arrays of objects can also be dynamically
allocated:

Time *tptr;
tptr = new Time(12,20);

...
delete tptr;

Time *tptr;
tptr = new Time[100];
tptr[0].setMinute(11);
...
delete [] tptr;

You can pass arguments
to a constructor using
this syntax.

It can use only the default
constructor to initialize the
elements in the new array.

18

Copy Constructors

! Special constructor used when a newly created
object is initialized using another object of the
same class.

! The default copy constructor, provided by the
compiler, copies member-to-member.

! Default copy constructor works fine in most
cases

! You can re-define it for your class as needed.

Time t1;
Time t2 = t1;
Time t3 (t1);

Both of the last two
use the copy constructor

19

IntCell declaration
! Problem with the default copy constructor:  

what if the class contains a pointer member?
class IntCell
{
 public:
 IntCell (int);
 int read () const;
 void write (int);

 private:
 int *storedValue;
};

IntCell::IntCell (int initialValue)
{ storedValue = new int;
 *storedValue = initialValue; }

int IntCell::read () const
{ return *storedValue; }

void IntCell::write (int x)
{ *storedValue = x; }

Note: dynamic
memory allocation

20

Problem with member-wise
assignment

! What we get from member-wise assignment in
objects containing dynamic memory (ptrs):

IntCell object1(5);
IntCell object2 = object1; // calls copy constructor

 //object2.storedValue=object1.storedValue

object2.write(13);
cout << object1.read() << endl;
cout << object2.read() << endl;

13
13

Output:

object1 object2

storedValue

13

storedValue

21

Programmer-Defined  
Copy Constructor

! Prototype and definition of copy constructor:

! Copy constructor takes a reference parameter
to an object of the class
- This is required.

IntCell::IntCell(const IntCell &obj) {
 storedValue = new int;
 *storedValue = *(obj.storedValue)
}

IntCell(const IntCell &obj); Add to class declaration

22

Programmer-Defined  
Copy Constructor

! Each object now points to separate dynamic
memory:

IntCell object1(5);
IntCell object2 = object1; //now calls MY copy constr

object2.write(13);
cout << object1.read() << endl;
cout << object2.read() << endl;

object1 object2

storedValue

135

5
13

Output:

storedValue

23

Sample Problem 1
Car class: Write a class named Car that has the
following member variables:
! yearModel An int that holds the car’s year model.
! make A string that holds the make of the car.
! speed An int that holds the car’s current speed.
The class should have the following member functions.
! Constructor. Accepts the car’s year model and make

as arguments. Assigns 0 to the speed variable.
! Accessors. Functions to get the values stored in

member variables.
! accelerate. The accelerate function should add 5 to

the speed member variable
Demonstrate the class in a driver program. 24

Sample Problem 2

Number Array Class: Design a class that has an
array of floating-point numbers. The constructor should
accept an integer argument and dynamically allocate
the array to hold that many numbers. The destructor
should free the memory held by the array. In addition,
there should be member functions to perform the
following operations:
! Store a number in a specified position of the array
! Retrieve a number from a position of the array
! Return the average of the values stored in the array
! Include a copy constructor!

