Operator Overloading |
and Templates |

Week 6
Gaddis: 8.1, 14.5, 16.2-16.4

CS 5301
Fall 2015

Jill Seaman

Linear Search in C++

first attempt ‘

int searchList (int list[], int size, int target) {

int position = -1; //position of target

for (int i=0; i<size; i++)

if (list[i] == target) //found the target!
position = i; //record which item
}
return position;

}

’ Is this algorithm correct?

’ Is this algorithm efficient (does it do unnecessary work)?

Linear Search

« Search: find a given target item in an array,
return the index of the item, or -1 if not found.

* Linear Search: Very simple search method:

- Compare first element to target value,
if not found then compare second element to target

value . ..

- Repeat until:
target value is found (return its index) or
we run out of items (return -1).

Linear Search in C++

second attempt

int searchList (int list[], int size, int value) {
int index=0; //index to process the array

int position = -1; //position of target
bool found = false; //flag, true when target is found

while (index < size && !found)
if (list[index] == value) //found the target!

//set the flag

found = true;
//record which item

position = index;

}
index++; //increment loop index

return position;

Is this algorithm correct?
Is this algorithm efficient (or does it do unnecessary work)?




—

Operators such as =, +, <, and others can be
defined to work for objects of a user-defined class

The name of the function defining the over-loaded
operator is operator followed by the operator
symbol:

operator+ to define the + operator, and

operator= to define the = operator

Operator Overloading

Just like a regular member function:

Prototype goes in the class declaration
Function definition goes in implementation file

5

Invoking an Overloaded Operator

Operator can be invoked (called) as a regular
member function:
int minutes = objectl.operator-(object2);

It can also be invoked using the more
conventional syntax for operators:

int minutes = objectl - object2;

This is the main reason to overload operators,
s0 you can use this syntax for objects of your class

Both call the same function (operator-), from the
perspective of object1 (on the lefthand side7).

—

Overloaded Operator Prototype

Prototype:
int operator-(const Time &right);
H—J
‘ parameter for
return function object on right
type name side of operator

Pass by constant reference
Does NOT copy the argument as pass-by-value does
But does not allow the function to change its value
(so it’s like pass by value without the copying).
optional for overloading operators

Example: minus for Time objects

class Time { Subtraction
private:
int hour, minute;
public:

int operator- (const Time &right);

}i

int Time::operator- (const Time &right) {
//Note: 12%12 = 0
return (hour%12)*60 + minute -
((right.hour%12)*60 + right.minute);

}

//in a driver:

Time timel(12,20), time2(4,40); -
int minutesDiff = time2 - timel; Output: 260

cout << minutesDiff << endl; 3




—

Overloading == and < for Time

—

Overloading + for Time

bool Time::operator== (Time right) {
if (hour == right.hour &&
minute == right.minute)
return true;
else
return false;

}

bool Time::operator< (Time right) {
if (hour == right.hour)
return (minute < right.minute);
return (hour%l12) < (right.hour%l2);
}

//in a driver:

Time timel(12,20), time2(12,21);

if (timel<time2) cout << “correct” << endl;

if (timel==time2) cout << “correct again”<< endl;

class Time {
private:
int hour, minute;
public:
Time operator+ (Time right);
}i
Time Time::operator+ (Time right) { //Note: 12%12 = 0
int totalMin = (hour%12)*60 + (right.hour%12)*60
+ minute + right.minute;
int h = totalMin / 60;
h = h3l2; //keep it between 0 and 11
if (h==0) h = 12; //convert 0:xx to 12:xx
Time result(h, totalMin % 60);
return result;
}
//in a driver: Output: 2:55
Time t1(12,5);
Time t2(2,50);
Time t3 = tl+t2;
t3.display();

The this pointer

this: a predefined pointer that can be used in a

class’s member function definitions

this always points to the instance (object) of
the class whose function is being executed.

Use this to access member vars that may be

hidden by parameters with the same name:

Time::Time(int hour, int minute) {
// Time *this; implicit decl
this->hour = hour;
this->minute = minute;

}

Or return *this from a function.

Overloading Prefix ++ for Time

class Time {

private:
int hour, minute;
public:
Time operator++ ();
Yi
Time Time::operator++ () {
if (minute == 59) {
minute = 0;
if (hour == 12) hour = 1; else hour++;
} else {
minute++;
}
return *this; //this points to the calling instance
}

//in a driver:
Time t1(12,55);
Time t2 = ++t1;
tl.display(); cout << “ *; t2.display(); 12

Output: 12:56 12:56




—

Overloading Postfix ++ for Time

class Time {
private:
int hour, minute;
public:
Time operator++ (int);
}.

’
Time Time::operator++ (int) {

Time temp(hour,minute); //save this to return it
if (minute == 59) {

minute = 0;

if (hour == 12) hour = 1; else hour++;
} else {

minute++;

}

return temp; //this points to the calling instance

}

//in a driver:

Time t1(12,55); 4o, .
Time t2 = t1++: Output: 12:56 12:55 4

tl.display(); cout << “ “; +t2.display();

’ Templates:

Type independence

Many functions, like finding the maximum of an
array, do not depend on the data type of the
elements.

We would like to re-use the same code
regardless of the item type...

without having to maintain duplicate copies:
maxIntArray (int a[]; int size)
maxFloatArray (float a[]; int size)
maxCharArray (char a[]; int size)

Generic programming

Writing functions and classes that are type-
independent is called generic programming.

These functions and classes will have one (or
more) extra parameter to represent the specific
type of the components.

When the stand-alone function is called the
programmer provides the specific type:

max<string>(array,size);

Templates

C++ provides templates to implement generic
stand-alone functions and classes.

A function template is not a function, it is a
design or pattern for a function.

The function template makes a function when
the compiler encounters a call to the function.

Like a macro, it substitutes appropriate type




l Examp|e function temp]ate l Notes about the function
swap | template example
* The header: template <class T>

template <class T>

votd ol e T o - class is a keyword. You could also use typename:
lhs = rhs; template <typename T>
) rhs = tmp; T is the parameter name. You can call it
int main() { outout whatever you like.
int x = 5; utput: oy . . oy
int y = 7; s - it is often capitalized (because it is a type)
: - u " ere hello )
string a = "hello”; - names like T and U are often used
string b = “there”;
swap <int> (x, y); //int replaces T °

e <atrings (o bys /retring ropiaces T The parameter name (T in this case) can be
cout << x << 4 # <<y << endl; replaced ONLY by a type.

cout << a << “ “ << b << endl;

Example class template Example class template

vector: class decl | vector, function definitions
// A barebones vector ADT template <typename T>
vector<T>::vector(int init_cap) {
template <typename T> Note: not ALL types capacity = init_cap;
class vector { shauld be rgplaced by data = new T[capacity];
. the type variable T

private: length = 0;

T* data; //stores data in dynamically allocated array }

int length; //number of elements in vector template <typename T>

int capacity; //size of array, to know when to expand void vector<T>::push back(T x) {

void expand(); //to increase capacity as needed if (capacity == length)
public: expand();

vector(int initial capacity); data[length] = x;

~vector(); length++;

void push_back(T); //add a T to the end }

T pop_back(); //remove a T from the end and return template <typename T>

T getElementAt(int k); //access the T in the kth position T vector<T>::pop back() { assert(e): if e is false, it causes the
}i assert (length > 0); execution of the program to stop (exit).

length--; Requires #include<cassert>
This is NOT the same as SimpleVector in the Gaddis book. 19 return data[length]; 20
}




| Example class template

vector, function definitions

template <typename T>
T vector<T>::getElementAt(int k) {
assert (k>=0 && k<length);
return datalk];
}
template <typename T>
void vector<T>::expand() {
capacity *= 2;
T* new _data = new T[capacity];
for (int k = 0; k < length; k += 1)
new_datal[k] = datal[k];
delete[] data;
data = new _data;
}
template <typename T>
vector<T>::~vector() {
delete [] data;

}
21

Class Templates and .h files

* Template classes cannot be compiled separately
- Machine code is generated for a template class only
when the class is instantiated (used).

= When you compile a template (class declarations + functions
definitions) it will not generate machine code.

- When a file using (instantiating) a template class is
compiled, it requires the complete definition of the
template, including the function definitions.

AND function definitions must go in the header file.

- Itis still good practice to define the functions outside
of (after) the class declaration. 23

| Example class template

using vector

int main() {

vector<string> m(2);
m.push_back("As");

m.push_back("Ks");

m.push_back("Qs");

m.push_back("Js");

for (int i=0; i<4; i++) {

cout << m.getElementAt(i) << endl;

}

Output:

As
Ks
Qs
Js

- Therefore, for a class template, the class declaration

22




