
1

Operator Overloading
and Templates

Week 6

Gaddis: 8.1, 14.5, 16.2-16.4

CS 5301
Fall 2015

Jill Seaman

2

Linear Search

! Search: find a given target item in an array,
return the index of the item, or -1 if not found.

! Linear Search: Very simple search method:
- Compare first element to target value, �

if not found then compare second element to target
value . . .
- Repeat until: 

target value is found (return its index) or �
we run out of items (return -1).

3

Linear Search in C++
first attempt

int searchList (int list[], int size, int target) {

 int position = -1; //position of target

 for (int i=0; i<size; i++)
 {
 if (list[i] == target) //found the target!
 position = i; //record which item
 }
 return position;
}

Is this algorithm correct?

Is this algorithm efficient (does it do unnecessary work)?

4

Linear Search in C++
second attempt

int searchList (int list[], int size, int value) {

 int index=0; //index to process the array
 int position = -1; //position of target
 bool found = false; //flag, true when target is found

 while (index < size && !found)
 {
 if (list[index] == value) //found the target!
 {
 found = true; //set the flag
 position = index; //record which item
 }
 index++; //increment loop index
 }
 return position;
}

Is this algorithm correct?

Is this algorithm efficient (or does it do unnecessary work)?

5

Operator Overloading
! Operators such as =, +, <, and others can be

defined to work for objects of a user-defined class
! The name of the function defining the over-loaded

operator is operator followed by the operator
symbol: 
operator+ to define the + operator, and 
operator= to define the = operator

! Just like a regular member function:
- Prototype goes in the class declaration
- Function definition goes in implementation file

6

Overloaded Operator Prototype
! Prototype:

! Pass by constant reference
‣ Does NOT copy the argument as pass-by-value does
‣ But does not allow the function to change its value
‣ (so it’s like pass by value without the copying).
‣ optional for overloading operators

int operator-(const Time &right);

return
type

function
name

parameter for
object on right

side of operator

7

Invoking an Overloaded Operator

! Operator can be invoked (called) as a regular
member function:

! It can also be invoked using the more
conventional syntax for operators:

! Both call the same function (operator-), from the
perspective of object1 (on the lefthand side).

int minutes = object1.operator-(object2);

int minutes = object1 - object2;

This is the main reason to overload operators,
so you can use this syntax for objects of your class

8

Example: minus for Time objects

class Time {
private:
 int hour, minute;
public:
 int operator- (const Time &right);

};

int Time::operator- (const Time &right) {
 //Note: 12%12 = 0
 return (hour%12)*60 + minute -
 ((right.hour%12)*60 + right.minute);
}

//in a driver:
Time time1(12,20), time2(4,40);
int minutesDiff = time2 - time1;
cout << minutesDiff << endl;

Output: 260

Subtraction

9

Overloading == and < for Time
bool Time::operator== (Time right) {
 if (hour == right.hour &&
 minute == right.minute)
 return true;
 else
 return false;
}

bool Time::operator< (Time right) {
 if (hour == right.hour)
 return (minute < right.minute);
 return (hour%12) < (right.hour%12);
}

//in a driver:
Time time1(12,20), time2(12,21);
if (time1<time2) cout << “correct” << endl;
if (time1==time2) cout << “correct again”<< endl;

10

Overloading + for Time
class Time {
 private:
 int hour, minute;
 public:
 Time operator+ (Time right);
};
Time Time::operator+ (Time right) { //Note: 12%12 = 0
 int totalMin = (hour%12)*60 + (right.hour%12)*60
 + minute + right.minute;
 int h = totalMin / 60;
 h = h%12; //keep it between 0 and 11
 if (h==0) h = 12; //convert 0:xx to 12:xx
 Time result(h, totalMin % 60);
 return result;
}
//in a driver:
 Time t1(12,5);
 Time t2(2,50);
 Time t3 = t1+t2;
 t3.display();

Output: 2:55

11

The this pointer
! this: a predefined pointer that can be used in a

class’s member function definitions
! this always points to the instance (object) of

the class whose function is being executed.
! Use this to access member vars that may be

hidden by parameters with the same name:

! Or return *this from a function.

Time::Time(int hour, int minute) {
 // Time *this; implicit decl
 this->hour = hour;
 this->minute = minute;
}

12

Overloading Prefix ++ for Time
class Time {
 private:
 int hour, minute;
 public:
 Time operator++ ();
};
Time Time::operator++ () {
 if (minute == 59) {
 minute = 0;
 if (hour == 12) hour = 1; else hour++;
 } else {
 minute++;
 }
 return *this; //this points to the calling instance
}
//in a driver:
 Time t1(12,55);
 Time t2 = ++t1;
 t1.display(); cout << “ “; t2.display();

Output: 12:56 12:56

13

Overloading Postfix ++ for Time
class Time {
 private:
 int hour, minute;
 public:
 Time operator++ (int);
};
Time Time::operator++ (int) {
 Time temp(hour,minute); //save this to return it
 if (minute == 59) {
 minute = 0;
 if (hour == 12) hour = 1; else hour++;
 } else {
 minute++;
 }
 return temp; //this points to the calling instance
}
//in a driver:
 Time t1(12,55);
 Time t2 = t1++;
 t1.display(); cout << “ “; t2.display();

Output: 12:56 12:55
14

Templates:
Type independence

! Many functions, like finding the maximum of an
array, do not depend on the data type of the
elements.

! We would like to re-use the same code
regardless of the item type...

! without having to maintain duplicate copies:
- maxIntArray (int a[]; int size)
- maxFloatArray (float a[]; int size)
- maxCharArray (char a[]; int size)

15

Generic programming

! Writing functions and classes that are type-
independent is called generic programming.

! These functions and classes will have one (or
more) extra parameter to represent the specific
type of the components.

! When the stand-alone function is called the
programmer provides the specific type:

max<string>(array,size);

16

Templates
! C++ provides templates to implement generic

stand-alone functions and classes.

! A function template is not a function, it is a
design or pattern for a function.

! The function template makes a function when
the compiler encounters a call to the function.
- Like a macro, it substitutes appropriate type

17

Example function template
swap

template <class T>

void swap (T &lhs, T &rhs) {

 T tmp = lhs;

 lhs = rhs;

 rhs = tmp;

}

int main() {

 int x = 5;

 int y = 7;

 string a = “hello”;

 string b = “there”;

 swap <int> (x, y); //int replaces T

 swap <string> (a, b); //string replaces T

 cout << x << “ “ << y << endl;

 cout << a << “ “ << b << endl;

}

7 5
there hello

Output:

18

Notes about the function  
template example

! The header: template <class T>
- class is a keyword. You could also use typename: 

template <typename T>
! T is the parameter name. You can call it

whatever you like.
- it is often capitalized (because it is a type)
- names like T and U are often used

! The parameter name (T in this case) can be
replaced ONLY by a type.

19

Example class template
vector: class decl

// A barebones vector ADT

template <typename T>

class vector {

private:

 T* data; //stores data in dynamically allocated array

 int length; //number of elements in vector

 int capacity; //size of array, to know when to expand

 void expand(); //to increase capacity as needed

public:

 vector(int initial_capacity);

 ~vector();

 void push_back(T); //add a T to the end

 T pop_back(); //remove a T from the end and return

 T getElementAt(int k); //access the T in the kth position

};

Note: not ALL types
should be replaced by
the type variable T

This is NOT the same as SimpleVector in the Gaddis book. 20

Example class template
vector, function definitions

template <typename T>

vector<T>::vector(int init_cap) {

 capacity = init_cap;

 data = new T[capacity];

 length = 0;

}

template <typename T>

void vector<T>::push_back(T x) {

 if (capacity == length)

 expand();

 data[length] = x;

 length++;

}

template <typename T>

T vector<T>::pop_back() {

 assert (length > 0);

 length--;

 return data[length];

}

assert(e): if e is false, it causes the
execution of the program to stop (exit).
Requires #include<cassert>

21

Example class template
vector, function definitions

template <typename T>

T vector<T>::getElementAt(int k) {

 assert (k>=0 && k<length);

 return data[k];

}

template <typename T>

void vector<T>::expand() {

 capacity *= 2;

 T* new_data = new T[capacity];

 for (int k = 0; k < length; k += 1)

 new_data[k] = data[k];

 delete[] data;

 data = new_data;

}

template <typename T>

vector<T>::~vector() {

 delete [] data;

}
22

Example class template
using vector

int main() {

 vector<string> m(2);

 m.push_back("As");

 m.push_back("Ks");

 m.push_back("Qs");

 m.push_back("Js");

 for (int i=0; i<4; i++) {

 cout << m.getElementAt(i) << endl;

 }

}

As
Ks
Qs
Js

Output:

23

Class Templates and .h files
! Template classes cannot be compiled separately
- Machine code is generated for a template class only

when the class is instantiated (used).
❖ When you compile a template (class declarations + functions

definitions) it will not generate machine code.
- When a file using (instantiating) a template class is

compiled, it requires the complete definition of the
template, including the function definitions.
- Therefore, for a class template, the class declaration

AND function definitions must go in the header file.
- It is still good practice to define the functions outside

of (after) the class declaration.

