
1

Inheritance & Polymorphism

Week 7

Gaddis: Chapter 15

CS 5301
Fall 2015

Jill Seaman

2

Inheritance

• A way to create a new class from an existing class
• The new class is a specialized version of the existing

class
• Base class (or parent) – the existing class
• Derived class (or child) – inherits from the base class
• The derived class contains all the members from the

base class (in addition to the ones in the derived class).
class Student {

 . . .

}

class UnderGrad : public Student {

 . . .

}Base class Derived class

3

Access to private members

private members:
 char letter;
 float score;
 void calcGrade();
public members:
 void setScore(float);
 float getScore();
 char getLetter();

class Grade
private members:
 int numQuestions;
 float pointsEach;
 int numMissed;
public members:
 Test(int, int);

class Test : public Grade

When Test class inherits
from Grade class using
public class access, it
looks like this:

private members:
 int numQuestions:
 float pointsEach;
 int numMissed;
public members:
 Test(int, int);
 void setScore(float);
 float getScore();
 float getLetter();

An instance of Test contains letter and score,
but they are not directly accessible from inside
(or outside) the Test member functions. 4

Constructors and Destructors in
Base and Derived Classes

• Derived classes can have their own constructors and
destructors
• When an object of a derived class is created,

1. the base class’s (default) constructor is executed first,
2. followed by the derived class’s constructor

• When an object of a derived class is destroyed,
1. the derived class destructor is called first,
2. then the base class destructor

5

Constructors and Destructors:
example

class BaseClass {
public:
 BaseClass()
 { cout << "This is the BaseClass constructor.\n"; }
 ~BaseClass()
 { cout << "This is the BaseClass destructor.\n"; }
};
class DerivedClass : public BaseClass {
public:
 DerivedClass()
 { cout << "This is the DerivedClass constructor.\n"; }
 ~DerivedClass()
 { cout << "This is the DerivedClass destructor.\n"; }
};
int main() {
 cout << "We will now define a DerivedClass object.\n";
 DerivedClass object;
 cout << "The program is now going to end.\n";
}

We will now define a DerivedClass object.
This is the BaseClass constructor.
This is the DerivedClass constructor.
The program is now going to end.
This is the DerivedClass destructor.
This is the BaseClass destructor.

Output:

6

Passing Arguments to a non-default  
Base Class Constructor

• Allows programmer to choose which base class
constructor is called from the derived class constructor
• Specify arguments to base constructor in the derived

constructor function header:

• You must specify a call to a base class constructor if
base class has no default constructor

//assuming Square is derived from Rectangle:
Rectangle::Rectangle(double w, double len)
 { width = w; length = len; }

Square::Square(int side) : Rectangle(side, side)
{ // code for Square constr goes here, if any }

7

Redefining Base Class Functions
• Redefining function: a function in a derived class that

has the same name and parameter list as a function
in the base class
• Not the same as overloading – with overloading,

parameter lists must be different
• Objects of base class use base class version of

function; objects of derived class use derived class
version of function.
• To call the base class version from the derived class

version, you must prefix the name of the function with
the base class name and the scope resolution
operator: Rectangle::display()

8

Redefining Base Class Functions:
example

class Animal {
 private:
 string species;
 public:
 Animal() { species = "Animal";}
 Animal(string spe)
 { species = spe ;}
 void display()
 {cout << "species " << species; }
};

class Primate: public Animal {
 private:
 int heartCham;
 public:
 Primate() : Animal("Primate") { }
 Primate(int in) : Animal ("Primate")
 { heartCham = in; }
 void display()
 { Animal::display(); //calls base class display()
 cout << ", \n# of heart chambers " << heartCham;
 }
};

int main() {
 Animal jasper; // Animal()
 Primate fred(4); // Primate(int)
 jasper.display(); cout << endl;
 fred.display(); cout << endl;
}

species Animal
species Primate,
of heart chambers 4

Output:

9

Include Guards

• These preprocessor directives prevent the header file
from accidentally being included more than once.
• If you have a base class with 2 derived classes, and

the derived classes are both included in a driver . . .

#ifndef RECTANGLE_H
#define RECTANGLE_H
class Rectangle
{
 private:
 double width;
 double length;
 public:
 void setWidth(double);
 void setLength(double);
 double getWidth() const;
 double getLength() const;
 double getArea() const;
};
#endif

Rectangle.h

10

Polymorphism
! The Greek word poly means many, and the

Greek word morphism means form.
! So, polymorphism means 'many forms'.
! In object-oriented programming (OOP),

polymorphism refers to
- identically named (and redefined) methods
- that have different behavior depending on the

(specific derived) type of object that they are called
on.

11

Example of polymorphism?
void f (Animal a) {
 a.speak();
}

int main() {
 Cat c;
 Dog d;
 f(c);
 f(d);
}

cout << “Name” << name1 << endl;

! IF the output is “meow bark”, yes, polymorphism.
- The behavior of a in f would depend on its specific

(derived) type.
! IF the output is “none none”, no it’s not.

class Animal {
 private:
 ...
 public:
 void speak() { cout << “none ”; }
};
class Cat : public Animal {
 private:
 ...
 public:
 void speak() { cout << “meow “; }
};
class Dog : public Animal {
 private:
 ...
 public:
 void speak() { cout << “bark “; }
};

12

Polymorphism in C++

! Polymorphism in C++ is supported through:
- virtual methods AND
- pointers to objects OR reference parameters.

! without these, C++ determines which method to
invoke at compile time (using the variable type).

! when virtual methods and pointer/references are
used together, C++ determines which method to
invoke at run time (using the specific type of the
instance currently referenced by the variable).

cout << “Name” << name1 << endl;

13

Virtual methods

! Virtual member function: function in a base class
that expects to be redefined in derived class

! Function defined with key word virtual:

! Supports dynamic binding: functions bound at
run time to function that they call

! Without virtual member functions, C++ uses
static (compile time) binding

cout << “Name” << name1 << endl;

virtual void Y() {...}

14

Example virtual methods

cout << “Name” << name1 << endl;

class Animal {
 public:
 virtual void speak();
 int age();
};
class Cat : public Animal
{
 public:
 virtual void speak(); //redefining a virtual
 int age(); //redefining a normal function
};
int main()
{
 Cat morris;
 Animal *pA = &morris; //using a pointer to get dynamic binding
 pA -> age(); // Animal::age() is invoked (base) (not virtual)
 pA -> speak(); // Cat::speak() is invoked (derived)
...
}

15

Virtual methods

! In compile-time binding, the data type of the
pointer resolves which method is invoked.

! In run-time binding, the type of the object
pointed to resolves which method is invoked.

cout << “Name” << name1 << endl;

void f (Animal &a) {
 a.speak();
}

int main() {
 Cat c;
 Dog d;
 f(c);
 f(d);
}

! Assuming speak is virtual,
since a is passed by
reference, the output is:

meow bark

16

Heterogeneous Array version 1:

cout << “Name” << name1 << endl;

class COne {
 public:
 void vWhoAmI() { cout << "I am One" << endl; }
};
class CTwo : public COne {
 public:
 void vWhoAmI() { cout << "I am Two" << endl; }
};
class CThree : public CTwo {
 public:
 void vWhoAmI() { cout << "I am Three" << endl; }
};

int main() {
{
 COne *apCOne[3] = { new COne, new CTwo, new CThree };
 for (int i = 0; i < 3; i++)
 apCOne[i] -> vWhoAmI();
}

I am One
I am One
I am One

Output:

17

Heterogeneous Array version 2:

cout << “Name” << name1 << endl;

class COne {
 public:
 virtual void vWhoAmI() { cout << "I am One" << endl; }
};
class CTwo : public COne {
 public:
 void vWhoAmI() { cout << "I am Two" << endl; }
};
class CThree : public CTwo {
 public:
 void vWhoAmI() { cout << "I am Three" << endl; }
};

int main() {
{
 COne *apCOne[3] = { new COne, new CTwo, new CThree };
 for (int i = 0; i < 3; i++)
 apCOne[i] -> vWhoAmI();
}

I am One
I am Two
I am Three

Output:
18

Abstract classes and
Pure virtual functions

• Pure virtual function: a virtual member function
that must be overridden in a derived class.

• The = 0 indicates a pure virtual function
• Must have no function definition in the base

class.

virtual void Y() = 0;

19

Abstract classes and
Pure virtual functions

• Abstract base class: a class that can have no
objects (instances).
• Serves as a basis for derived classes that will

have objects
• A class becomes an abstract base class when

one or more of its member functions is a pure
virtual function.

20

Example: Abstract Class

! An abstract class may not be used as an
argument type, as a function return type,or as
the type of an explicit conversion.

! Pointers and references to an abstract class
may be declared.

cout << “Name” << name1 << endl;

class CShape {
 public:
 CShape () { }
 virtual void vDraw () const = 0; // pure virtual method
};

CShape CShape1; // Error: object of abstract class
CShape* pCShape; // Ok
CShape CShapeFun(); // Error: return type
void vg(CShape); // Error: argument type

21

Example: Abstract Class
! Pure virtual functions are inherited as pure

virtual functions.

! Or else:

cout << “Name” << name1 << endl;

class CAbstractCircle : public CShape {
 private:
 int m_iRadius;
 public:
 void vRotate (int) {}
 // CAbstractCircle ::vDraw() is a pure virtual function
};

class CCircle : public CShape {
 private:
 int m_iRadius;
 public:
 void vRotate (int) {}
 void vDraw(); //define here or in impl file
};

22

Heterogeneous collection:
abstract base class

cout << “Name” << name1 << endl;

class Animal {
 private:
 string name;
 public:
 Animal(string n) {name = n;}
 virtual void speak() = 0;
};
class Cat : public Animal {
 public:
 Cat(string n) : Animal(n) { };
 void speak() {cout << "meow "; }
};
class Dog : public Animal {
 public:
 Dog(string n) : Animal(n) { };
 void speak() {cout << "bark "; }
};
class Pig : public Animal {
 public:
 Pig(string n) : Animal(n) { };
 void speak() {cout << "oink "; }
};

int main()
{
 Animal* animals[] = {
 new Cat("Charlie"),
 new Cat("Scamp"),
 new Dog("Penny"),
 new Cat("Libby"),
 new Cat("Patches"),
 new Dog("Milo"),
 new Pig("Wilbur") };

 for (int i=0; i< 7; i++) {
 animals[i]->speak();
 }
}

meow meow bark meow meow bark oink
Output:

23

Sample Problem
Ship, CruiseShip, and CargoShip Classes : Design a
Ship class that has the following members:
 • A member variable for the name of the ship (a string)
 • A member variable for the year the ship was built (a string)
 • A constructor and appropriate accessors and mutators
 • A virtual print function that displays the ship’s name and the year
it was built.

Design a CruiseShip class that is derived from the Ship
class. The CruiseShip class has the following members:
 • A member variable for the maximum number of passengers (an int)
 • A constructor and appropriate accessors and mutators
 • A print function that overrides the print function in the base class.
The CruiseShip class’s print function should display only the ship’s
name and the maximum number of passengers. 24

Sample Problem, cont.
Design a CargoShip class that is derived from the
Ship class. The CargoShip class should have the
following members:
 • A member variable for the cargo capacity in tonnage (an int).
 • A constructor and appropriate accessors and mutators.
 • A print function that overrides the print function in the base
class. The CargoShip class’s print function should display only the
ship’s name and the ship’s cargo capacity.

Demonstrate the classes in a program that has an array
of Ship pointers. The array elements should be
initialized with the addresses of dynamically allocated
Ship, CruiseShip, and CargoShip objects. The program
should then step through the array, calling each object’s
print function.

