[— 10 ked Lists

Linked Lists Introduction to Linked Lists
* A data structure representing a list
Week 8 * A series of dynamically allocated nodes
_ chained together in sequence
Gaddis: Chapter 17 - Each node points to one other node.
* A separate pointer (the head) points to the first
CS 5301 item in the list.
Fall 2015 - The last element points to nothing (NULL)
Jill Seaman "
head
N
Node Organization Defining the Linked List variable

* Each node contains: - Define a pointer for the head of the list:

- data field — may be a structure, an object, etc.
- a pointer — that can point to another node

ListNode *head = NULL; //NULL specifies end of list

* Now we have an empty linked list:

pointer

data —_—

head — NULL

* We use a struct to define the node type:

struct ListNode { * NULL is equivalent to address 0

double value; . .

ListNode *next; * to test a pointer for NULL (these are equivalent):
b while (p) ... <==> while (p != NULL) ..

* next can hold the address of a ListNode3.
- it can also be NULL

if (!p) ... <==> if (p == NULL) ... 4

Linked List operations

Basic operations:

create a new, empty list

append a node to the end of the list
insert a node within the list

delete a node

display the linked list
delete/destroy the list

Linked List class declaration

#include <cstddef> // for NULL NumberList.h

using namespace std;

class NumberList

{
private:
struct ListNode

double value;
struct ListNode

}i
ListNode *head;

// the node data type

// data
*next; // ptr to next node

// the list head

public:
NumberList() = { head = NULL; } //create empty list
~NumberList();

void appendNode (double);
void insertNode(double);
void deleteNode(double);
void displayList();

Operation:
append node to end of list

appendNode: adds new node to end of list
Algorithm:

Create a new node and store the data in it
If the list has no nodes (it's empty)

Make head point to the new node.
Else

Find the last node in the list

Make the last node point to the new node

appendNode: find last elem

How to find the last node in the list?
Algorithm:

Make a pointer p point to the first element

while the node p points to has a NEXT node
make p point to that node (the NEXT node of
the node p currently points to)

In C++:
ListNode *p = head; ListNode *p = head;
while ((*p).next != NULL) <==> |while (p->next)
P = (*p).next; p = p->next;

p=p->next is like i++ 8

void NumberList::appendNode (double num) { in NumberList.cpp

ListNode *newNode; // To point to the new node

// Create a new node and store the data in it
newNode = new ListNode;

newNode->value = num;

newNode->next = NULL;

// If empty, make head point to new node
if (head==NULL)
head = newNode;

else {
ListNode *p; // To move through the list
p = head; // initialize to start of list

// traverse list to find last node
while (p->next) //it’s not last
P = p->next; //make it pt to next

// now p pts to last node
// make last node point to newNode
p->next = newNode;

Operation: display the list

Traversing a Linked List

Visit each node in a linked list, to

display contents, sum data, test data, etc.
Basic process:

set a pointer to point to what head points to
while pointer is not NULL
process data of current node
go to the next node by setting the pointer to
the next field of the current node
end while

void NumberList::displayList() { in NumberList.cpp

ListNode *p; //ptr to traverse the list

// start p at the head of the list
p = head;

// while p pts to something (not NULL), continue
while (p) {

//Display the value in the current node

cout << p->value << “ “;

//Move to the next node
P = p->next;

cout << endl;

void NumberList::displayList() {
for (ListNode *p = head; p; p = p->next)
cout << p->value << endl;
}

Destroying a Linked List: destructor

The destructor must “delete” (deallocate) all
nodes used in the list

To do this, use list traversal to visit each node:

save the address of the next node in a pointer
delete the node

NumberList::~NumberList() {

in NumberList.cpp
ListNode *p; // traversal ptr

ListNode *n; // saves the next node

p = head; //start at head of list
while (p) {
n = p->next; // save the next
delete p; // delete current
p = n; // advance ptr

} 12

}

Operation:
delete a node from the list

deleteNode: removes node from list, and deletes
(deallocates) the removed node.

Requires two extra pointers:

one to point to the node to be deleted

one to point to the node before the node to be
deleted.

n

ENEIENEOE R

head

’ Deleting 13 from the Iist‘ 13

Delete Node Algorithm

Delete the node containing num

use p to traverse the list, until it points to num or NULL
--as p is advancing, make n point to the node before it

if (p is not NULL) //found!
if (p==head) /lit's the first node, and n is garbage
make head point to the second element
delete p’s node (the first node)
else
make n’s node point to what p’s node points to
delete p’s node
else: ... pis NULL, not found do nothing 15

Deleting a node

Change the pointer of the previous node to point
to the node after the one to be deleted.

Then just “delete” the p node

n->next = p->next;
n o) delete p;

5 19 NULL

head

Linked List functions: deleteNode

void NumberList::deleteNode(double num) { in NumberList.cpp
ListNode *p = head; // to traverse the list

ListNode *n; // trailing node pointer (previous)

// skip nodes not equal to num, stop at last
while (p && p->value!=num) {

n = p; // save it!

p = p->next; // advance it

}

// p not null: num is found, set links + delete
if (p) |

if (p==head) { // p points to the first elem, n is garb
head = p->next;

delete p;

} else { // n points to the predecessor
n->next = p->next;
delete p;

Operation: |

insert a node into a linked list Inserting a Node into a Linked List

Inserts a new node into the middle of a list. Insertion completed:
Uses two extra pointers: | n->next = newNode; .
. .)) newNode->next = p; p
one to point to node before the insertion point . -

one to point to the node after the insertion point
[this one is optional] n p 5 13 19 | | NULL

‘ 5 ‘ ‘ 13‘ 19‘ NULL 17 0

head newNode
17 NULL
-E 17 18
newNode
- iInsertN
Insert Node Algorithm sertNode code
void NumberList::insertNode(double num) { UEEET!%?E@Eﬂﬁl
. . . ListNode *newNode; // ptr to new node
ListNode *p; // ptr to traverse list
nsert node In a certain pOSI lon ListNode *n; // node previous to p
Create the new node, store the data in it
. . //allocate new node
Use pointer p to traverse the list, newNode = new ListNode;

until it points to: node after insertion point or NULL newNode->value = num;

--as p is advancing, make n point to the node before N:ﬁigdéll nodes less than num
if p points to first node (p is head, n was not set) while (p && p->value < num) {

make head point to new node B D ext; |7 cavence

make new node point to p’s node }
else if (p == head) { //insert before first

make n’s node point to new node head = newNode;

. , newNode->next = p;
make new node point to p’s node

else { //insert after n

n->next = newNode;
19 newNode->next = p; 20

}
}

Doubly linked list

each node has two pointers, one to the next node
and one to the previous node

Linked List variations

head points to first element, tail points to last.

can traverse list in reverse direction by starting at
the tail and using p=p->prev.

B PR P i
list {
head NULL

21

—

Circular linked list

Linked List variations

last cell’'s next pointer points to the first element.
no null pointers
every node has a successor

e el]y

22

Linked lists vs Arrays
(pros and cons)

A linked list can easily grow or shrink in size.
No maximum capacity required
No need to resize+copy when list reaches max size.

When a value is inserted into or deleted from a
linked list, no other nodes have to be moved.

Arrays allow random access to elements: array]i]
(linked lists require traversal to get i'th element).

Arrays do not require extra storage for
“links” (linked lists are impractical when the
pointer value is bigger than data value). =

Sample Problems

List Copy Constructor : Modify your linked list class of
Programming Challenges 1 and 2 to add a copy
constructor. Test your class by making a list, making a
copy of the list, and then displaying the values in the copy.

List Reverse : Modify the linked list class you created in
the previous programming challenges by adding a member
function named reverse that rearranges the nodes in the
list so that their order is reversed. Demonstrate the
function in a simple driver program.

24

