
Programming Assignment #2

Manage a Small Store Inventory

CS 2308.251, 252, and 257 Spring 2016
Instructor: Jill Seaman

Due: Wednesday, 2/17/2016: upload electronic copy by 9:00am

Problem:

Write a C++ program that will allow a user to manage the inventory of a small store.

The inventory for the small store will contain the following information for each product
in the inventory:
product name (i.e. “Apple iPhone 3GS 8GB”, may contain spaces in it, must be unique)
locator (string with no spaces, used to physically locate product, not unique)
quantity (how many of this product in stock, greater than or equal to 0)
price (in dollars and cents, greater than 0)

Note: Your program should be able to store up to 100 different products.

The program should offer the user a menu with the following options:
1. Add a new product to the inventory (prompt user for input values).
2. Remove a product from the inventory (by product name).
3. Adjust the quantity of a product (given the product name and change amount).
4. Display the information for a product (given the product name).
5. Display the inventory sorted by product name.
6. Quit

The program should perform the selected operation and then re-display the menu.

Do not change the menu numbers associated with the operations.

Note for options 1 and 2, you are not changing the quantity of a product. You are
adding (or removing) the information about a product from the inventory (you are
adding or removing an element from an array).

For the Add operation, a complete solution will ensure that the inventory is not full (100
products) before adding a new product, and it should perform input validation (see
constraints above). If it fails to add a product, it will output a message indicating why.

For the Remove operation, the program should indicate whether the operation was
successful or not (if the product was not found).

!1

For option 3, Adjust the quantity, the program should ask for the desired change to
the quantity (a positive value increases the quantity, a negative value decreases the
quantity by that amount). If the resulting quantity would be less than 0, do not change
the quantity and display an appropriate message.

For option 4, label the output values (i.e. Name:, Locator:, etc.) If the product is not
found, display an appropriate message.

For option 5, display the information for each product on a separate line. The values
should line up in columns (headers for the table are optional). If the inventory is
empty, you may output an empty table (no need to display an error message). 

NOTES:

• This is a long program! Start soon! Read all the instructions carefully!  

• Do not use global variables (global constants are encouraged, especially for the
maximum capacity of the inventory).

• Use an array of structures to store the inventory in the program. The structure
definition should be global, but the array of structures should NOT be global. 

• You MUST use a partially filled array: there should be no empty slots or gaps
in the inventory. Keep all the products at the front of the array, in locations
0..count-1 where count is the number of products. If you have empty slots in
your array, the provided search and sort code will NOT work! 

• You MUST use binary search for all searches! No linear searches anywhere!

• The program must be modular, with significant work done by functions. Each
function should perform a single, well-defined task (Hint: each menu choice).
Also note that some arguments will need to be passed by reference!

• To input the product name (which may contain spaces) use this each time:

• OR you may require that the productName has no spaces and use  
cin >> productName; (for a small point deduction). 

• You may use the following code from the book. See the Resources tool in TRACS:
◦ Program 5-8: use this as a pattern for the menu portion of the program.
◦ Program 8-2: this contains the binary search code.
◦ Program 8-4: this contains the bubble sort code. 

!2

cin >> ws; // skips whitespace (newline) after prev input
getline(cin, productName); // where productName is a string var

• I recommend implementing the features in this order (do one per day):
◦ The menu (output a sentence for each menu option).
◦ Add a product (without input validation first, then add it later).
◦ Display the inventory (first unsorted, then (when that works) sorted).
◦ Display the information for ONE product (by product name, requires search).
◦ Adjust quantity (requires search).
◦ Remove a product (requires search).

• I will put sample output on the class website in a separate file (output2.txt)

• Your program must compile and run, otherwise you will receive a score of 0.

• Your program must pass Test Case 0 or you will receive a score of 30 or less
with no credit for the other grading categories (correctness/constraints/style).
The input values and expected output are in a file called TC0.txt on the class
website. This test case Adds 3 products, with valid data and no spaces in the
product name. It then selects option 5 to output the inventory in a table (it does
not need to be sorted to pass TC0). 

Logistics:

Name your file assign2_xxxxx.cpp where xxxxx is your TX State NetID (your
txstate.edu email id). The file name should look something like this: assign2_js236.cpp

There are two steps to the turn-in process:

1. Submit an electronic copy using the Assignments tool on the TRACS website for
this class. 

2. Submit a printout of the source file at the beginning of class, the day the
assignment is due. Please print your name on the front page, staple if there is
more than one page.

 
See the assignment turn-in policy on the course website (cs.txstate.edu/~js236/cs2308)
for more details.

!3

http://cs.txstate.edu/~js236/cs2308

