Assignment #5

Design Patterns

CS 4354 Summer II 2016
Instructor: Jill Seaman

Due: before class Thursday, 8/4/2016 (upload electronic copy by 9:30am, bring
paper copy of the UML diagrams to class).

We want to implement a Java class to represent a student and their scores from a class
they are enrolled in. The Student class provides at least the following methods:

Student (String name); //constructor

void addAssignmentScore (double as); //add 1 assignment score
void addExamScore (double es); //add 1 exam score
double getAverage(); //the combined average

There is also a Roster class that stores a list of the Students in a particular class. The
Roster class provides at least these methods:

Roster(String name, String number); //constructor
String getCourseName(); //getter for name
addStudent (Student student); //add 1 student

See the website for initial versions of the Student and Roster classes, as well as an
incomplete version of the Driver used below. Do not change these files except as
specified in the notes below.

1. The algorithm to compute the average must be able to be selected at runtime. It also
must be possible to add new algorithms to compute the average to the program
without modifying the Student class.

Your task: Using a specific Design Pattern, develop a design for Student that
satisfies the above requirements, then implement your design.

Use the following two algorithms for computing the average in your implementation:

A. The Assignment average contributes 40%, and the Exam average contributes
60% to the final class average.

B. Use the same percentages as the first algorithm, but first if there are at least 2
Assignments scores, drop the lowest Assignment score.

Testing The driver creates a Student, adds three assignment scores and two exam
scores, and computes their average first using method A, then using method B.



2. We want to extend our design with a class GradeTracker that tracks (stores) the
current letter grade of a given Student object (>=90=A, >=80=B, etc.). Whenever the
Student object is changed, the tracker has to be modified automatically.

Your task: Using a specific Design Pattern, develop a design for the tracker, then
implement your design.

Testing The driver defines a tracker object to track the student and outputs the letter
grade of the student. It then adds an exam score that will change the letter grade of
the student, and outputs the tracker’s letter grade again to show it was updated
automatically.

3. We want to provide access to the averages of the students in the class, without
providing access to either the ArrayList of Students or the Student objects.

We do not want to provide a collection of the averages to the client code (we don’t
want to require the client to store all the values locally).

We also want to be able to allow multiple clients to access the averages
simultaneously without interference (so adding a “current element” pointer to the
Roster will not suffice).

Your task: Using a specific Design Pattern, develop a design that satisfies the
above requirements for accessing the averages, then implement your design.
(Coding hint: return an anonymous class, See Java-Inheritance slide 22).

Testing The driver creates two students and adds them to a Roster object. It has a
while loop framework for accessing the averages and outputting them to the screen.
You must add code to initialize the traversal mechanism, to test if all the elements
have been accessed, and to access the next element.

NOTES:
* This assignment is to be done with your partner (in groups of 2).

* For each problem, draw the class diagram showing how your classes implement
the Design Pattern, and label it with the name of the design pattern you used.

Use the package “assign5"” for your classes and put your files in the appropriate
directory structure.

* Allowed Changes to Student You may add a field, a setter for it, and initialize
it in the constructor. You may make it extend a subclass or implement an
interface. You may add code to the methods.



* Allowed Changes to Roster You may add an accessor method.
* Allowed Changes to Driver These are stated in comments in Driver.java

* Follow the style guidelines from the class website. Use javadoc comments for
all of your public elements.

Submit:

A. Please combine your *.java files into a single zip file (assign5_xxxxxx_yyyyyy.zip).
The xxxxxx and yyyyyy are your TX State NetIDs (mine is js236, you have two, one
for each partner). Submit an electronic copy, using the Assignments tool on the
TRACS website for this class.

B. Submit the UML diagrams showing the design of each of the three problems (on
paper, bring to class). Put the name of the design pattern you chose for each
problem!!



