
Guidelines for Class Design
Horstmann Chapter 3.4 and 3.5

CS 4354

Summer II 2016

Jill Seaman

1

Object-Oriented Design Continued:

2

• The previous chapter was concerned with how to find classes for
solving a practical programming problem

✦Focused on classes and relationships to each other

• In this chapter, we explore how to write a single class well.

• Note:

✦Bad example shows how NOT to do it.

✦Good example shows how to do it right.

3.4 The importance of Encapsulation
Or . . .The importance of Information Hiding

• Assume we have implemented a Day class as follows:

• But now we want to represent the day by an integer recording the
number of days since Jan 1, 1970.

✦We remove the year, month, and date fields and supply an int julian

field, and add getYear(); getMonth(); getDate(); functions.

✦Replace d.year with d.getYear()

✦Replace d.year++ with d.setYear(d.getYear()+1);

✦Etc.

• This is too much trouble! Better to have had made fields private
and had a good public interface from the start.

3

public class Day {
 public int year, month, date;
 ...
}

3.4.1 Accessors and Mutators

• Mutator: method that changes object state (field values).

• Accessor: method that reads object state without changing it.

• Class without mutators is called immutable

• String is immutable

• java.util.Date and GregorianCalendar are mutable

• immutable objects are good, no one else can change them.

• immutable objects are easy to reason about, do not need to

understand how they might be changed by other objects.

4

Don’t supply set methods for every instance field.
• Our Day class has getYear, getMonth, getDate accessors

• Should we add setYear, setMonth,setDate mutators, with input

validation?

• Example:

• Maybe we should call setDate first?

 

• Not all mutators are bad, maybe have a function to add a specific
number of days (it knows how many days in each month):

5

Day deadline = new Day(2001, 1, 31);  
deadline.setMonth(2); // ERROR  
deadline.setDate(28);

Day deadline = new Day(2001, 2, 28);  
deadline.setDate(31); // ERROR  
deadline.setMonth(3);

Day deadline = new Day(2001, 2, 28);  
deadline.addDays(31);

Sharing Mutable References unintentionally

• Pitfall:

• No mutators, but Day is mutable:

• Remedy: use clone:

6

Employee harry = . . .;  
Day d = harry.getHireDate();  
d.setMonth(12); // changes Harry's state!!!

class Employee {
 private String name;
 private double salary;
 private Day hireDate;
 . . .
 public String getName() {return name;}
 public double getSalary() {return salary;}
 public Day getHireDate() {return hireDate;}
}

public Day getHireDate() {
 return (Day)hireDate.clone();
}

We want this class
to be immutable

Sharing Mutable References

7

Day

Sharing Mutable References unintentionally

• Pitfall:

• No mutators, but Day is still mutable:

• Remedy: use clone in the constructor:

8

Day d = new Day();
Employee e = new Employee("Harry Hacker", d);
d.setMonth(12); // changes Harry's state!!!

class Employee {
 public Employee(String aName, Day aHireDate {
 name = aName;
 hireDate = aHireDate;
 }
}

public Employee(String aName, Day aHireDate) {
 name = aName;
 hireDate = (Day)hireDate.clone();
}

3.4.3 Separating Accessors and Mutators

• A method that returns information about an object should ideally
not change the object state.

• A method that changes the object state should ideally have return
type void.

• Apparent example of violation:

• remove yields front value AND removes it (is it an accessor or
mutator?)

• What if I want to view the front element without removing it?

9

java.util.Queue:
void add(E x) //enqueue (at rear)
E remove() //dequeue (remove from front, and returns it)

Separating Accessors and Mutators

• Better interface, peek is accessor, remove is mutator:

• But less convenient, programmer has to do two operations in order
to dequeue: peek then remove.

• The actual interface is more convenient:

• Refine rule of thumb: Mutators can return a convenience value,
provided there is also an accessor to get the same value.

10

java.util.Queue:
void add(E x) //enqueue (at rear)
E peek() //returns front element without returning it.
void remove() //removes front element (no return value)

java.util.Queue:
void add(E x) //enqueue (at rear)
E peek() //returns front element without returning it.
E remove() //dequeue (remove from front, and returns it)

3.4.4 Side Effects

• A side effect of a method is any data modification that is
observable when the method is called.

• A method can change:

✦fields of its class (then it’s a mutator)

✦its arguments

✦accessible static fields of other objects

• Changing the arguments or other objects is unexpected.

• Good example:

• Changes a, but not b.

11

a.addAll(b) //adds all elements of collection b to collection a

Side Effects

• Bad example:

• System.out is a public static object (a PrintStream)

• System.out.println(x); changes System.out

• Your classes may need to run in an environment without System.out

• Instead throw an exception to report an error condition!

• “Printing error messages to System.out is reprehensible:”

• Try to access System.out from the driver only.

12

if (newMessages.isFull())  
 System.out.println("Sorry--no space");

3.4.5 The Law of Demeter

• An object should call methods on (or use) only the following

- the object itself (self call)

- the objects attributes (instance variables)

- the parameters of methods of the object

- Any object created by this object

• It should NOT call methods on an object returned from a method
call.

- Specifically: An object should not ask another object to give it a

part of its internal state to manipulate.

• This is a good guideline, not a law.

13

“Don’t talk to
 strangers” The Law of Demeter:

• Bad Example: Mail system in chapter 2: Connection object
changes contents of Mailbox returned by MailSystem.findMailbox:

• I call this: Sharing Mutable References intentionally

• Breaks encapsulation (information hiding) of the MailSystem class

• A future version of the MailSystem might not use Mailbox objects.

• Remedy in mail system: Delegate mailbox methods to mail system:

• Reduces the dependencies in the system (coupling)

14

Mailbox currentMailbox = mailSystem.findMailbox(…);
currentMailbox.setPasscode(accumulatedKeys);

mailSystem.setPasscode(mailboxNumber, accumulatedKeys);

3.5 Analyzing the Quality of an Interface

• The design of classes must be approached from two points of view
simultaneously.

• But the two have different priorities:

✦ class designer: efficient algorithms, convenient coding

✦ class user (another programmer): ability to use operations

without reading code, just the right operations provided.

• Use the following criteria to evaluate your class interfaces:

✦ cohesion, completeness, convenience, clarity, consistency.

• Note: these criteria sometimes conflict with each other. 
Use your judgment to balance these conflicts.

15

Cohesion

• Class should describe a a single concept

• Methods should be related to support a single purpose

• Bad example:

• Why is processCommand there? It’s not related to Messages.
Should probably go elsewhere.

16

public class Mailbox  
{  
 public addMessage(Message aMessage) { ... }  
 public Message getCurrentMessage() { ... }  
 public Message removeCurrentMessage() { ... }  
 public void processCommand(String command) { ... }  
 ...  
}

Completeness

• Support ALL operations that are well-defined (or make sense) for
the abstraction

• Potentially bad example: java.util.Date  
We want to count how many milliseconds elapse between two
statements:

• No such operation in Date class

• Does it fall outside the responsibility?

• It provides a way to check ordering between Dates, and get an

absolute number of milliseconds, but not the difference.

17

Date start = new Date();  
// do some work  
Date end = new Date();
// How many milliseconds between start and stop?

Convenience

• A good interface makes all tasks possible . . . and common tasks
simple

• Bad example: Reading from System.in before Java 5.0

• Why doesn't System.in have a method to read a line of text?

• After all, System.out has println.

• Scanner class finally fixed this inconvenience

18

BufferedReader in = new BufferedReader( 
 new InputStreamReader(System.in));
String line = in.readLine();

Clarity
• The interface of a class should be clear to programmers, without

generating confusion.

• ListIterator.add(T) makes sense, before the cursor:

• ListIterator.remove() does NOT always remove the element before
the cursor:

• API documentation for remove(): Removes from the list the last element
that was returned by next or previous. This call can only be made once per
call to next or previous. It can be made only if add has not been called
after the last call to next or previous. (confusing!!)

19

ListIterator<String> iterator = list.listIterator(); // |ABC
iterator.next(); // A|BC
iterator.add("X"); // AX|BC

// This isn’t how it works, both calls are illegal
iterator.remove(); // A|BC (should remove the X)
iterator.remove(); // |BC (should remove the A)

Consistency

• The operations in a class should be consistent with each other with
respect to names, parameters and return values, and behavior.

• To specify a day in the Gregorian-Calendar class call:

• because the month should be between 0 and 11, but the day is
between 1 and 31. Why is only the month 0-based?

• To check if two strings are equal you call s.equals(t); or
s.equalsIgnoreCase(t); to do case-insensitive comparison.

• Theres also compareTo/compareToIgnoreCase.

• But then there’s this (why break the pattern with a flag?):

20

new GregorianCalendar(year, month - 1, day)

boolean regionMatches(boolean ignoreCase, int toffset, String other,
int ooffset, int len)

