Java - Inheritance/Polymorphism/Interfaces

Horstmann chapters 4.1-5 & 6.1

CS 4354
Summer Il 2016

Jill Seaman

Interface, 3 definitions used in this class

* (from ¢s2308): the mechanism that code outside the object uses to
interact with the object; the object’s public member functions.

* (graphical) user interface (sometimes shortened to “interface”): the
means by which the user and a computer system interact, in
particular the use of input devices and software.

+ Java Interface: a reference type, similar to a class, that contains
constants and/or method signatures (methods with empty bodies).

Goal: to separate the interface
from the implementation

Example: The Icon interface in Java

* You can use javax.swing.JOptionPane to display message:

JOptionPane.showMessageDialog(null,

4 Note the “i” icon on the left:

"Hello, World!");

* To specify an arbitrary image file:

JOptionPane.showMessageDialog(
null,

"Hello, World!",

"Message",
JOptionPane.INFORMATION MESSAGE,
new ImagelIcon("globe.gif"));

x|

4 Hello, World!

Example: The Icon interface in Java

« What if we want to draw the image using library methods?
Here is the declaration of the showMessageDialog method:

public static void showMessageDialog(
Component parent,
Object message,
String title,
int messageType,
Icon anIcon);

* You can use any class that implements the javax.swing.lcon
interface type:
public interface Icon {
int getIconWidth();
int getIconHeight();
void paintIcon(Component ¢, Graphics g, int x, int y);

}

Java Interfaces

+ In the Java programming language, an Interface is a form or
template for a class: the methods do no have implementations
(they are like C++ prototypes).

» The methods are implicitly public.

» An interface may contain fields, but these are implicitly static and
final (named constants).

+ A class implements the interface type by providing an implements
clause and supplying implementations for the methods that are
declared in the interface type.

+ An interface can be used as a type (for variables, parameters, etc)

+Java permits an object instance of a class that implements an Interface to
be assigned to a variable or parameter of that type.

Example: A new class that implements Icon

* The javax.swing.Imagelcon class implements Icon (see the api)

* Let’s design a class Marslcon that implements the Icon interface
type (see Horstmann for imports and detailed explanation):

public class MarsIcon implements Icon {
public MarsIcon(int aSize) {
size = aSize;
}
public int getIconWidth() { return size; }
public int getIconHeight() { return size; }

Note it provides definitions
for the three lcon methods

public void paintIcon(Component c, Graphics g, int x, int y) {
Graphics2D g2 = (Graphics2D) g;
Ellipse2D.Double planet = new Ellipse2D.Double(x, y, size, size);
g2.setColor(Color.RED);
g2.fill(planet);

}

private int size;

Example: Using Marslcon in showMessageDialog

* This driver uses our Marslcon class to make the dialog:

import javax.swing.*;

Message

public class IconTester Hello, Mars!
{

public static void main(String[] args)
{
JOptionPane.showMessageDialog(
null,
"Hello, Mars!",
"Message",

JOptionPane.INFORMATION MESSAGE,
new MarsIcon(50));

System.exit(0); ® Message

} . Hello, Mars!
| got this when | ran

the code on my mac: oK

Class diagram

« the Icon interface type and the classes that implement it:

4+ A———|> B means class A implements interface B
4+ A— — —>B means class A uses class/interface B
Marslcon Imagelcon
v
JOption N «interface»
Pane Icon

Polymorphism

* Upcasting:

4+Permitting an object of a class type to be treated as an object of any
interface type it implements:

Icon X = new MarsIcon(50);

* Polymorphism:

4+The ability of objects belonging to different class types to respond to
method calls of the same name, but with an appropriate type-specific
behavior.

+It allows many types (implementing the same Interface) to be treated as if
they were one type, and a single piece of code to work on all those
different types equally, yet getting type-specific behavior for each one.

Polymorphism Example (using an Interface):

* Wind, Stringed and Percussion are Instruments

public interface Instrument {
void play(String n);
}

public class Wind implements Instrument {
public void play(String n) {
System.out.println("Wind.play()
}

"+ n);

}
public class Stringed implements Instrument {
public void play(String n) {
System.out.println("Stringed.play() " + n);
}
}
public class Percussion implements Instrument {
public void play(String n) {
System.out.println("Percussion.play() " + n);

}

}

Polymorphism Example continued

public class Music {
public static void tune(Instrument i) {
i.play("Middle C");
}
public static void main(String[] args) {
Wind flute = new Wind();
Stringed violin = new Stringed();
tune(flute); //upcasting to Instrument
tune(violin); //upcasting to Instrument
}
}

What is output?

Wind.play() Middle C
Stringed.play() Middle C

Polymorphism:
in tune, i is an Instrument, but it calls the play method
based on the specific type of the object it receives.

What if we didn’t have polymorphism?

+ We could overload tune to work for each type of Instrument

* If we add a new instrument, we have to add a new tune function

public class Music {
public static void tune(Wind i) {
i.play("Middle C");

} Output:

public static void tune(Stringed i) {

i.play("Middle C"); Wind.play() Middle C

} Stringed.play() Middle C

public static void tune(Percussion i) {
i.play("Middle C");

}

public static void main(String[] args) {
Wind flute = new Wind();
Stringed violin = new Stringed();
tune(flute); // No upcasting necessary
tune(violin);

}

}

But we do have upcasting and polymorphism:

* We can get the same effect with just one tune method

public class Music {

public static void tune(Instrument i) {
i.play("Middle C");

}

public static void main(String[] args) {
Wind flute = new Wind();
Stringed violin = new Stringed();
Percussion snaredrum = new Percussion();
tune(flute); // upcasting
tune(violin);
tune(snaredrum); }

Output: polymorphism

Wind.play() Middle C
Stringed.play() Middle C
Percussion.play() Middle C

Polymorphism in JOptionPane.showMessageDialog

+ Consider implementing the showMessageDialog method:

’public static void showMessageDialog(. . . Icon anIcon); ‘

« The width of the dialog box depends on the width of anIcon.

* But anIcon could refer to a MarsIcon or to an ImageIcon, how
do we call the proper method?

- Since the type of anIcon must be a class that implements Icon,
we know it must have a getIconWidth () method that returns the
width of the Icon, so we can use that: anIcon.getIconWidth()

+ During run-time, the Java interpreter determines the class type of
the object anIcon is referring to, and uses the implementation of
getIconWidth from that class.

Implementing the Java Comparable Interface

« Assume you want to sort an ArrayList of custom objects (instances

of some class you created).

+ The following static method is available in the Java API:

void Collections.sort(List<T> list)

// for ArrayLists

« All elements in the ArrayList must implement the

java.lang.Comparable<T> interface:

int compareTo(T o);

//T is your custom class

The call object1.compareTo(object?) is expected to return a negative

Sorting with Comparable, example

import java.util.*;

public class Student implements Comparable<Student> {
private String name;
private String major;
private int idNumber;
private float gpa;
public Student(String name, String major,
int idNumber, float gpa) {
this.name = name; this.major = major;
this.idNumber = idNumber; this.gpa = gpa;
}
public String getName() { return name; }
public float getGpa() { return gpa; }
public String toString() {
return "Student: " + name + " " +major + " "

+ idNumber + " " + gpa;

number if object1 should come before object2, zero if the objects are
equal, and a positive number otherwise

}
public int compareTo(Student rhs) {

return name.compareTo(rhs.name);

}

This will sort by name

compareTo is already
defined in String, so
we can reuse it.

16

Sorting with Comparable, example (p2)

public static void main(String[] args) {

}

ArrayList<Student>a = new ArrayList<Student>();
a.add(new Student("Doe, J”,”Math",1234,3.6F));
a.add(new Student("Carr, M”,”CS",1000,2.7F));
a.add(new Student("Ames, D”,"Business",2233,3.7F));
System.out.println("Before: ");
for (Student s : a)

System.out.println(s);
Collections.sort(a);
System.out.println("After: ");
for (Student s : a)

System.out.println(s);

Output: Before:

Student: Doe, J Math 1234 3.6
Student: Carr, M CS 1000 2.7
Student: Ames, D Business 2233 3.7
After:

Student: Ames, D Business 2233 3.7
Student: Carr, M CS 1000 2.7
Student: Doe, J Math 1234 3.6

Implementing the Java Comparator Interface

+ Assume you want to sort the ArrayList of students by gpa, but you
don’t want to reimplement compareTo.

+ The following static method is available in the Java API:
void Collections.sort(List<T> list, Comparator<T> c)

« The java.lang.Comparator<T> interface:
int compare(T objl, T obj2); //T is your custom class
Compares obj1 to obj2 for order. Returns a negative number, zero, or a

positive number depending on whether obj1 is less than, equal to, or
greater than obj2 in the particular sort order

Sorting with Comparator, sort by gpa

* To sort by gpa, define a new class that implements
Comparator as follows:

public class StudentByGpa implements Comparator<Student> {

public int compare(Student lhs, Student rhs) {
float lhsGpa = lhs.getGpa();
float rhsGpa = rhs.getGpa();
if (lhsGpa < rhsGpa) return -1;
if (lhsGpa == rhsGpa) return 0;
return 1;

+ To sort by name, define another Comparator as follows:

public class StudentByName implements Comparator<Student> {

public int compare(Student lhs, Student rhs) {
return lhs.getName().compareTo(rhs.getName());

}

Sorting with Comparator, example (p2)

public static void main(String[] args) {

ArrayList<Student>a = new ArrayList<Student>();
a.add(new Student("Doe, J”,”Math",1234,3.6F));
a.add(new Student("Carr, M”,”CS",1000,2.7F));
a.add(new Student("Ames, D”,"Business",2233,3.7F));
System.out.println("Before: ");
for (Student s : a)

System.out.println(s);
Comparator<Student> comp = new StudentByGpa();
Collections.sort(a, comp);
System.out.println("After: ");
for (Student s : a)

System.out.println(s);

}

t t: Before:
C)u pLJ Student: Doe, J Math 1234 3.6

Student: Carr, M CS 1000 2.7
Student: Ames, D Business 2233 3.7
After:

Student: Carr, M CS 1000 2.7
Student: Doe, J Math 1234 3.6
Student: Ames, D Business 2233 3.7

20

Anonymous objects and classes

* Anonymous objects: no need to name an object used only once:

Collections.sort(a, new StudentByGpa());

* Anonymous classes: no need to name a class used only once:

Comparator<Student> comp = new
Comparator<Student>() {
public int compare(Student lhs, Student rhs) {
return lhs.getName().compareTo(rhs.getName());

}

}i

» The right-hand side expression defines a temporary class with no
name that implements Comparator<Student>, and constructs one
object of that class.

21

Anonymous classes

« Anonymous classes can be returned by a function:

public class Student {

public static Comparator<Student> compByName() {
return new
Comparator<Student>() {
public int compare(Student lhs, Student rhs) {
return lhs.getName().compareTo(rhs.getName());
}
}i
public static Comparator<Student> compByGpa() {
return new
Comparator<Student>() {
public int compare(Student lhs, Student rhs) {
return Math.round(lhs.getGpa() - rhs.getGpa());
}
}i

}

Collections.sort(a, Student.compByGpa());

22

Inheritance

* A way to reuse code from existing classes by extending an existing
class with new fields and methods

« Classes can inherit attributes and behavior from pre-existing
classes called base classes, superclasses, or parent classes. The
resulting classes are known as derived classes, subclasses or child
classes.

* The relationships of classes through inheritance gives rise to a
hierarchy.

 In Java, each class has exactly one superclass. If none are
specified, then java.lang.Object is the superclass.

* Note: In Java, constructors are NOT inherited.

23

Simple Example of Inheritance

public class Cleanser {
private String s = new String('"Cleanser");
public void append(String a) { s += a; }
public void dilute() { append(" dilute()"); }
public void apply() { append(" apply()"); }
public void scrub() { append(" scrub()"); }

public String toString() { return s; } toString is a method

} of java.lang.Object

public class CleanserTester {
public static void main(String[] args) {
Cleanser x = new Cleanser();
x.dilute(); x.apply(); x.scrub();
System.out.println(x);
}

Output:
’ Cleanser dilute() apply() scrub()

24

Simple Example of Inheritance

public class Detergent extends Cleanser { |extends is used to
// Change (override) a method:

specify the superclass

public void scrub() {
append (" Detergent.scrub()");
super.scrub(); // Call superclass version

}
}

public class DetergentTester {
public static void main(String[] args) {
Detergent x = new Detergent();
x.dilute(); x.apply(); =x.scrub(); =x.foam();
System.out.println(x);
CleanserTester.main(args);

}

}

public void foam() { append(" foam()"); } // Added method

Output:

Cleanser dilute() apply() Detergent.scrub() scrub() foam()
Cleanser dilute() apply() scrub()

25

General convention

* Fields are private
4+Not even subclasses should access these directly
* Methods are public

+This is so other classes, including subclasses can access them.

+ Overriding a method:

+Writing a new instance method in the subclass that has the same signature
as the one in the superclass.

4+Any instance of the subclass will use the method from the subclass
+Any instance of the superclass will use the method from the superclass

+The subclass can call the superclass method using “super.method()”

26

Invoking Superclass Fields and Methods

« Cannot access superclass fields if they are private:

public class Detergent extends Cleanser {
public String toString() { return “Detergent: “ + s; }
//ERROR: s is private

}
* But be careful when calling superclass method:

public class Detergent extends Cleanser {
public String toString() {return “Detergent: “ + toString();
//ERROR: recursive call!!

}

}

Correct:

public class Detergent extends Cleanser {
public String toString() {
return “Detergent: “ + super.toString(); }

27

Initialization

+ Java automatically inserts calls to the (default) superclass

constructor at the beginning of the subclass constructor.
class Art {
Art() {
System.out.println("Art constructor");

}
} Output:

class Drawing extends Art {

Drawing() { Art constructor
System.out.println("Drawing constructor"); Drawing constructor
} Cartoon constructor

}
public class Cartoon extends Drawing {
public Cartoon() {
System.out.println("Cartoon constructor");

}

} So constructors are not

public class CartoonTester { inherited, they are called
public static void main(String[] args) { from the constructors of

Cartoon x = new Cartoon();
the subclass.
}

} 28

Initialization

If your class doesn’t have default (no arg) constructors, or if you want to
call a superclass constructor that has an argument, you must explicitly
write the calls to the superclass constructor using the super keyword
and the appropriate argument list
class Game {
int x;
Game(int i) {
X = 1i;
System.out.println("Game constructor");

}

}
class BoardGame extends Game {
BoardGame (int i) {
super(i);
System.out.println("BoardGame constructor");

}

public class Chess extends BoardGame {
Chess () {
super(11);
System.out.println("Chess constructor");

}

29

}

Access specifiers

* keywords that control access to the definitions they modify
4public: accessible to all other classes
+private: accessible only from within the class in which it is defined

+package (unspecified, default): accessible only to other classes in the
same package

4+protected: accessible to all classes derived from (subclasses of) the class
containing this definition, even if the class is in another package.
Note: protected also provides package access!!!

+ Classes can only be public or unspecified (which is package)

30

java.lang.Object

» some commonly used and/or overridden methods:

+toString: Returns a string representation of the object.
You should override this if you want a displayable version of the objects of
your class.

4+equals: Indicates whether some other object is "equal to" this one.
For your class, it will use ==, unless you override it.

4+clone: Creates and returns a copy of this object.
Make your class implement Cloneable to use a default version of this
method.

31

Polymorphism

» Upcasting:

4+Permitting an object of a subclass type to be treated as an object of any
superclass type.

Cleanser x = new Detergent();

» Polymorphism:

4+The ability of objects belonging to different types to respond to method
calls of the same name, each one according to an appropriate type-
specific behavior.

41t allows many types (derived from the same superclass) to be treated as if
they were one type, and a single piece of code to work on all those
different types equally, yet getting type-specific behavior for each one.

Very similar to polymorphism with Interfaces ‘

32

Polymorphism Example (using Inheritance):

* Wind, Stringed and Percussion are Instruments

public class Instrument {
void play(String n) {
System.out.println("Instrument.play()

"

+ n);
}
}
public class Wind extendsInstrument {
void play(String n) {
System.out.println("Wind.play() " + n);
}
}
public class Stringed extends Instrument {
void play(String n) {
System.out.println("Stringed.play() " + n);
}
}
public class Percussion extends Instrument {
void play(String n) {
System.out.println("Percussion.play() " + n);

}

} 33

Example continued

public class Music {

public static void tune(Instrument i) {
i.play("Middle C");

}

public static void main(String[] args) {
Wind flute = new Wind();
Stringed violin = new Stringed();
tune(flute); //upcasting to Instrument
tune(violin); //upcasting to Instrument

}

}
What is output?

Wind.play() Middle C Instrument.play() Middle C
Stringed.play() Middle C or Instrument.play() Middle C

Polymorphism:
in tune, i is an Instrument, but it calls the play method
based on the specific type of the object it receives.

34

Dynamic (run-time) binding

» Given the definition of tune, how does the compiler know which
definition of the play method to call? Instrument? Wind? Stringed?

public static void tune(Instrument i) {
i.play("Middle C");
}

+It will differ depending on the specific type of each argument passed to i.
4+This cannot be determined at compile time.

+ Binding: connecting the method call to a method definition.
4+Static binding: done at compile time (play binds to Instrument.play)

+Dynamic binding: at run-time, the JVM determines the actual type of i and
uses its play() definition. It can vary for each invocation of tune.

+If the actual type of i does not define “play()”, the JVM looks for the

nearest definition in its superclass hierarchy.
35

Abstract methods and classes

* An abstract class is a class that cannot be instantiated, but it can
be subclassed

+ It may or may not include abstract methods:

* An abstract method is a method that is declared in a class without
a method body, like this:

’abstract void f(int x); ‘

« If a class contains an abstract method, it must be declared to be
an abstract class.

36

Abstract methods and classes, example

* Any class that inherits from an abstract class must provide method
definitions for all the abstract methods in the base class.

4Unless the derived class is also declared to be abstract
* The Instrument class can be made abstract:
+No longer need “dummy” definitions for abstract methods

4+Common code (shared by subclasses) can be put in the abstract superclass

abstract class Instrument {
private int i; // Storage allocated in each subclass

abstract void play(String n); //subclass must define
String what() {

return “Instrument”;

}

abstract void adjust();

//when would this be executed?

//subclass must define

37

Interface or Abstract class?

* Interface
4+Pro: can be implemented by any number of classes

4Con: each class must have its own code for the methods, common
method implementations must be duplicated in each class

» Abstract Class

4+Pro: subclasses do not have to repeat common method implementations,
common code is in the abstract superclass

4+Con: Cannot be multiply inherited.

38

