
Programming Assignment #6

Match Brackets using a Stack

CS 2308.001 and 002 Fall 2016
Instructor: Jill Seaman

Due: Tuesday, 12/6/2016: upload electronic copy by 11:55pm

Given a text file, your program will determine if all the parentheses, braces, and square
brackets match, and are nested appropriately. Your program should work for
mathematical formulas and most computer programs.

Your program should read in the characters from the file, but ignore all characters
except for the following: { } () []

The general algorithm is to use a stack to store the opening unmatched brackets.
When a closing bracket is encountered, check it against the one on top of the stack--
make sure it matches, and pop it off. When you are finished there should be no
unmatched brackets left on the stack.

Your program should first implement a char stack. CharStack.h is provided on the
website. You must supply the CharStack.cpp file that includes the implementations of
the functions in the class declaration. Note that the stack elements will be stored in a
string, and no variable named top is necessary. You can complete this assignment
using these string functions: [n], size(), append() or +=, and erase(int,int).
(mystring.erase(x,n) erases n characters from mystring beginning at position x). 
Note: Do NOT use these functions: push_back, pop_back, or back.

Input/Output:

Your driver program must prompt the user to enter a filename. It should then try to
open the file and then check it to ensure the brackets all match appropriately. If they
all match, the program should output a message indicating the number of bracket pairs
that were matched. If not, the program should output an appropriate error message.

There are three types of errors that can happen (and they can happen with any kind of
bracket):

missing } : if you reach the end of the file, and there is an opening { that was
never matched, like: int main () { x[size]=10;

expected } but found) : this is a wrong closing bracket, like: {x[i]=10;)...
unmatched } : this occurs if there is a closing bracket but not an opening bracket

(not even one of the wrong kind), like: int main () { x[i]=10; } }...

This is an example of appropriate output when there is no error:

Enter the name of a file to check: CharStack.h
7 bracket pairs were matched

NOTES:

• This program must be done in a Linux or Unix environment, using a command line
compiler like g++. Do not use codeblocks, eclipse, or Xcode!

• Your CharStack.cpp (and driver) files must compile with the (unchanged) provided
files, otherwise you may receive a score of 0.

• Your CharStack.cpp file must pass Test Case 0 or you will receive a score of 30 or
less with no credit for the other grading categories (correctness/constraints/style).
The test case is in a driver file called TC0Driver.cpp on the class website. Your
CharStack.cpp file must compile with this driver and CharStack.h and produce the
expected output (see the comments in the file).

• Beware of stack underflow! Do NOT try to peek or pop an empty stack! Your peek
and pop functions should include a check that will abort the program if the driver calls
them on an empty stack. However, when I run your driver program, it should never
abort/crash (because it will check if the stack is empty before calling pop or peek).

• As soon as your driver encounters an error, your program should stop and print out
the appropriate error message. Do NOT try to keep going and find more errors!

• It might be easier to store the expected closing character on the stack when an
opening bracket is encountered. This simplifies the matching when a closing bracket
is encountered. 

Logistics:

For this assignment you need to submit two files: CharStack.cpp and your driver.
Please zip these into one file, assign7_xxxxxx.zip (where xxxxx is your NetID). Then
submit the zip file

Submit an electronic copy using the Assignments tool in TRACS before the deadline. 

For this assignment, no printout is required! The feedback cover sheet will be
posted to the assignments tool in TRACS (or emailed to you) after the assignments are
graded (and the grade will be posted to the TRACS gradebook2 tool).

