Final Exam Review

CS 2308
Fall 2016
Jill Seaman

Final Exam

- section 001 (12:30pm): Wed 12/14 11am-1:30pm
- section 002 (2:00pm): Wed 12/14 2pm-4:30pm
- In your regular classroom
- Closed book, closed notes, clean desk
- Comprehensive (covers entire course)
- 30% of your final grade
- Bring your ID card!
- Bring a number 2 pencil and eraser.
- No calculators, no headphones/earphones

Exam Format

- 150 points total:
 - 74 pts:
 - Multiple choice (scantron form)
 - 37 questions
 - 76 pts:
 - Writing programs/functions/classes/code
 - Finding errors in code (2 pages)

Content

150 points total (approximate break down):

- Unit 1 (23pts)
- Unit 2 (13pts)
- Analysis (12pts)
- Unit 3 (20pts)
- Unit 4 (20pts)
- C++ Programming on Linux (12pts)
- Unit 5 (20pts)
- Unit 6 (30pts)
Unit 1: Functions, Arrays & Structs

- Know how to program with functions, arrays and structures.
- Passing parameters by reference (and value)
- Scope rules
- Overloaded functions and default arguments
- Be able to process arrays
 - Be able to find the minimum/maximum value!
 - See review exercises
- Be able to find errors in code

Unit 2: Searching, Sorting & Analysis

- Searching
 - Linear Search
 - Binary Search
- Sorting
 - Bubble Sort
 - Selection Sort
- See review exercises:
 - Sample exercises to demonstrate algorithms
 - Be able to code linear search

Analysis of Algorithms: efficiency

- Efficiency
 - Growth rate functions, which are faster/slower
 - Use big-O notation
 - Efficiency of
 - searching/sorting algorithms
 - array access and traversal
 - linked list operations
- See the Final Exam Review Exercises for good coverage on this

Unit 3: Pointers & Dynamic Memory Alloc

- Pointer variables: how to define + initialize
- Address of (&) and Dereferencing (*) operators
- Pointers and arrays
 - an array variable is the address of its first element
 - array[index] = *(array + index)
- Dynamic memory allocation
 - new + delete operators
 - allocate new arrays (duplicateArray, etc.)
- Pointers as parameters (call by reference, arrays)
- Using pointers with linked lists
Unit 4: Intro to Classes

- Procedural programming vs object oriented programming
- Encapsulation, Data hiding, Interface
- Fundamentals of classes and objects:
 - Members: variables and functions
 - private vs public, access rules
 - declaration and implementation of classes
 - class declaration
 - defining member functions
 - constructors and destructors
 - instances and the dot operator

Unit 4: Intro to Classes

- Fundamentals of classes and objects (cont.):
 - inline member function definitions
 - defining instances of a class (objects)
 - arrays of objects, initialization
- Pointers to objects (and structs)
 - how to declare, assign
 - using ->
 - p->member vs. (*p).member vs. *(p.member)
 - dynamic allocation of objects, structures
 - when destructor function is called

C++ Programming on Linux

- Basic shell commands, know how to use
- edit, compile, run (nano, g++, a.out)
- Compiling multiple files:
 - How to split up code, what goes where
 - g++ a.cpp b.cpp
 - separate compilation
 - g++ -c a.cpp
 - g++ -c b.cpp
 - g++ a.o b.o
 - makefile: understand the ones used for the assignments, know how to use them

Unit 5: Linked Lists

- Dynamically allocated list data structure
- Organization: nodes, head pointer, empty list, NULL
- Linked list tasks: T1-T11:
 - create empty list, create a new node
 - add to front of list
 - append to end of non-empty list
 - traversing a linked list (display, count, sum, etc)
 - how to advance 2 pointers together (n and p)
 - delete given n and p, special cases
 - insert given n and p, special cases
 - linked list destruction
- Arrays vs Linked Lists
Unit 6: Stacks and Queues

- Know what ADT, LIFO and FIFO mean
- Know the 4 basic operations of each data type:
 - pop
 - push
 - enqueue
 - dequeue
 - isEmpty
 - isFull
- Be able to show contents of stack or queue after a series of operations
- Be able to implement the operations using a static array or a linked list.
- Be able to use a stack to solve a problem like matching brackets.

Sample Problems

See the lecture notes titled:
Final Exam Exercises
on the website

Office Hours
finals week

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>12/12</td>
<td>1:00-2:30pm</td>
</tr>
<tr>
<td>T</td>
<td>12/13</td>
<td>2:30-4:00pm</td>
</tr>
<tr>
<td>W</td>
<td>12/14</td>
<td>none (exams)</td>
</tr>
<tr>
<td>Th</td>
<td>12/15</td>
<td>none</td>
</tr>
<tr>
<td>F</td>
<td>12/16</td>
<td>2:30-3:30pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and by appt!</td>
</tr>
</tbody>
</table>

How to Study

- Start with the topics from this set of slides (Final Exam Review).
- Use the regular semester lectures to make sure you understand the topics (quiz yourself).
- Use the textbook to make sure you understand the lectures about the topics.
- Do the review exercises on the Final Exam Exercises slides. Do book exercises. Practice!!
- Go over the exams and assignment solutions (fix yours).
- Discuss with others! (and get some sleep)