
1

Linked Lists

Unit 5

Chapter 17

CS 2308
Fall 2016

Jill Seaman
2

17.1 Introduction to Linked Lists
l A data structure representing a list
l A series of dynamically allocated nodes

chained together in sequence
- Each node points to one other node.

l A separate pointer (the head) points to the first
item in the list.

l The last element points to null (address 0)

null

head

3

Node Organization
l Each node contains:
- data members – contain the elements’ values.
- a pointer – that can point to another node

l We use a struct to define the node type:

l next can hold the address of a ListNode.
- it can also be null

data
pointer

struct ListNode {
 double value;
 ListNode *next;
};

4

Using NULL (or nullptr)

l Equivalent to address 0
l Used to specify end of the list
l In C++11, you can use nullptr instead of NULL
l NULL is defined in the cstddef header.
l to test a pointer p for NULL, these are equivalent:

l Note: Do NOT dereference a NULL ptr!

while (p != NULL) ... <==> while (p) ...

if (p==NULL) ... <==> if (!p) ...

ListNode *p = NULL;
cout << p->value; //crash! null pointer exception

5

Linked Lists: Tasks
We will implement the following tasks on a linked list:

T1: Create an empty list
T2: Create a new node
T3: Add a new node to front of list (given newNode)
T4: Traverse the list (and output)
T5: Find the last node (of a non-empty list)
T6: Find the node containing a certain value
T7: Find a node AND it’s previous neighbor.
T8: Append to the end of a non-empty list
T9: Delete the first node
T10: Delete an element, given p and n
T11: Insert a new element, given p and n

6

T1:Create an empty list
l let’s make the empty list

struct ListNode // the node data type
{
 double value; // data
 ListNode *next; // ptr to next node
};

int main() {

 ListNode *head = NULL; // the empty list

}

NULL

head

7

T2:Create a new node:
l let’s make a new node:

l It’s not attached to the list yet.

 ListNode *newNode = new ListNode();
 newNode->value = 1.2;
 newNode->next = NULL;

newNode

1.2 NULL

8

T3:Add new node to front of list:
l make newNode’s next point to the first element.
l then make head point to newNode.

newNode
1.2 NULL

newNode->next = head;
head = newNode;

NULL

head

newNode

1.2

NULL

head

This works even if head is
NULL, try it.

9

T4:Traverse the list
(and output all the elements)

l let’s output a list of two elements:

l now using a temporary pointer to point to each node:

l now let’s rewrite that as a loop:

 ListNode *p; //temporary pointer (don’t use head for this)
 p = head; //p points to the first node
 cout << p->value << “ “;
 p = p->next; //makes p point to the 2nd node (draw it!)
 cout << p->value << endl;
 p = p->next; //what does p point to now?

 ListNode *p; //temporary pointer (don’t use head for this)
 p = head; //p points to the first node

 while (p!=NULL) {
 cout << p->value << “ “;
 p = p->next; //makes p point to the next node
 }

 cout << head->value << “ “ << head->next->value << endl;

10

T5:Find the last node
(of a non-empty list)

l Goal: make a temporary pointer, p, point to the
last node in the list.

l Make p point to the first node. Then:
- do p=p->next until p points to the last node.
- in the last node, next is null.
- so stop when p->next is null.
 ListNode *p=head; //p points to what head points to

 while (p->next!=NULL) {
 p = p->next; //makes p point to the next node
 }

null

head

p

11

T6:Find the node containing a
certain value

l Goal: make a temporary pointer, p, point to the
node containing 5.6.

l Make p point to the first node. Then:
- do p=p->next until p points to the node with 5.6.
- so stop when p->value is 5.6.
 ListNode *p=head; //p points to what head points to

 while (p->value!=5.6) {
 p = p->next; //makes p point to the next node
 }

null

head

p

5.6

12

Find the node containing a certain
value, continued

l What if 5.6 is not in the list?

l If 5.6 is not in the list, the loop will not stop. 
p will eventually be NULL, and evaluating  
p->value in the condition will crash.

l So let’s make the loop stop if p becomes NULL.
 ListNode *p=head; //p points to what head points to

 while (p!=NULL && p->value!=5.6) {
 p = p->next; //makes p point to the next node
 }

null

head

p

5.26.5 1.6

13

T7:Find a node AND  
it’s previous neighbor.

l sometimes we need to track the current and the
previous node:

 ListNode *p = head; //current node, set to first node
 ListNode *n = NULL; //previous node, none yet
 while (p!=NULL && p->value!=5.6) {
 n = p; //save current node address
 p = p->next; //advance current node to next one
 }

null

head

pn

6.5 4.4 5.6

14

T8:Append to the end of  
a non-empty list

l Create a new node, and find the last node:

l Now make the last node’s next point to
newNode.

ListNode *newNode = new ListNode();
newNode->value = 3.3;
newNode->next = NULL;
ListNode *p=head;
while (p->next!=NULL) {
 p = p->next;
}

p->next = newNode;

We’ve done this already.

newNode

3.3 NULL

null

head p

15

T9:Delete the first node

l delete the first element of a non-empty list

l what about deallocating the first node? Oops.
 ListNode *p = head;
 head = head->next;
 delete p;

 head = head->next;

null

head

NULL

head

p

16

T10: Delete an element, given p and n

n->next = p->next;

NULL
head

5 13 19

pn
Deleting 13 from the list

NULL

head

5 13 19

pn

NULL

head

5 19

pn
delete p;

17

T10: Delete an element, given p and n

l We know how to set up p and n, see T7.
l Now just reset a link, and deallocate p:

l But we should make sure p and n are not NULL:

 n->next = p->next; //make 5 point to 19
 delete p;

NULL
head

5 13 19

pn
Deleting 13 from the list

if (p!==NULL) { // p is pointing to something!
 if (n==NULL) // p must be pointing to first node
 head = head->next;
 else // p and n are not NULL
 n->next = p->next;
 delete p; // since p wasn’t NULL, deallocate
} //there is no else, if p was NULL, nothing to remove 18

n->next = newNode;
newNode->next = p;

Inserting 17 into the list

T11:Insert a new element, given p and n

NULL

head

5 13 19

newNode

17

pn

NULL

head

5 13 19

newNode 17 NULL

pn

19

T11:Insert a new element, given p and n

l We know how to set up p and n, see T7.
l We know how to create a new node, see T2.
l Now reset some links (consider if p and n are null):

 if (n==NULL) { // p must be pointing to first node
 head = newNode;
 newNode->next = p;
 } else { // n is not NULL
 n->next = newNode;
 newNode->next = p;
 }  
 //if p is null, n is pointing to the last node, and it works.

NULL

head

5 13 19

newNode 17 NULL

pn

20

Exercise: find four errors

l
int main() {
 struct node {
 int data;
 node * next;
 }

 // create empty list
 node * list;

 // insert six nodes at front of list
 node *n;
 for (int i=0;i<=5;i++) {
 n = new node;
 n->data = i;
 n->next = list;
 }

 // print list
 n = list;
 while (!n) {
 cout << n->data << " ";
 n = n->next;
 }
 cout << endl;
}

21

The (Abstract) List Type

l A List is an ordered collection of items of some
type T:
➡ each element has a position in the list
➡ duplicate elements are allowed

l List is not a C++ data type. It is abstract/
conceptual. It can be implemented in various
ways (using arrays or linked lists or…)

l We will first implement the list using a linked list
l Later we’ll consider how to use an array to

implement the list. 22

17.2 List operations

l Basic operations over a list:
- create a new, empty list
- append a value to the end of the list
- insert a value within the list
- delete a value (remove it from the list)
- display the values in the list
- delete/destroy the list  

 (if it was dynamically allocated)

23

Declaring the List data type

l We will be defining a class called NumberList to
represent a List data type.
- ours will store values of type double, using a linked

list.
l The class will implement the basic operations

over lists on the previous slide.
l In the private section of the class we will:
- define a struct data type for the nodes
- define a pointer variable (head) that points to the

first node in the list. 24

NumberList class declaration

l

#include <cstddef> // for NULL
using namespace std;

class NumberList
{
 private:
 struct ListNode // the node data type
 {
 double value; // data
 ListNode *next; // ptr to next node
 };
 ListNode *head; // the list head

 public:
 NumberList(); // creates an empty list
 ~NumberList();

 void appendNode(double);
 void insertNode(double);
 void deleteNode(double);
 void displayList();
};

NumberList.h

25

Operation:
Create the empty list

l Constructor: sets up empty list  
(This is T1, create an empty list).

#include "NumberList.h"

NumberList::NumberList()
{
 head = NULL;
}

NumberList.cpp

26

Operation:
append node to end of list

l appendNode: adds new node to end of list
l Algorithm: 
 

Create a new node (T2)
If the list is empty,
 Make head point to the new node. (T3)
Else (T8)
 Find the last node in the list
 Make the last node point to the new node

27

void NumberList::appendNode(double num) {

 // Create a new node and store the data in it (T2)
 ListNode *newNode = new ListNode;
 newNode->value = num;
 newNode->next = NULL;

 // If empty, make head point to new node (T3)
 if (head==NULL)
 head = newNode;

 else {
 // Append to end of non-empty list (T8)
 ListNode *p = head; // p points to first element

 // traverse list to find last node
 while (p->next) //it’s not last
 p = p->next; //make it pt to next

 // now p pts to last node
 // make last node point to newNode
 p->next = newNode;
 }
}

in NumberList.cpp

28

Driver to demo NumberList

l ListDriver.cpp version 1 (no output)

#include "NumberList.h"

int main() {

 // Define the list
 NumberList list;

 // Append some values to the list
 list.appendNode(2.5);
 list.appendNode(7.9);
 list.appendNode(12.6);

}

ListDriver.cpp

29

Traversing a Linked List

l Visit each node in a linked list, to
- display contents, sum data, test data, etc.

l Basic process (this is T4):

set a pointer to point to what head points to
while the pointer is not NULL
 process data of current node
 go to the next node by setting the pointer to
 the next field of the current node
end while

30

Operation: display the list

void NumberList::displayList() {

 ListNode *p = head; //start p at the head of the list

 // while p pts to something (not NULL), continue
 while (p)
 {
 //Display the value in the current node
 cout << p->value << “ “;

 //Move to the next node
 p = p->next;
 }
 cout << endl;
}

in NumberList.cpp

31

Driver to demo NumberList

l ListDriver.cpp version 2

#include "NumberList.h"

int main() {

 // Define the list
 NumberList list;

 // Append some values to the list
 list.appendNode(2.5);
 list.appendNode(7.9);
 list.appendNode(12.6);

 // Display the values in the list.
 list.displayList();
}

Output:
2.5 7.9 12.6

ListDriver.cpp

32

Operation: destroy a List
l The destructor must “delete” (deallocate) all

nodes used in the list
l To do this, use list traversal to visit each node
l ~NumberList: what’s wrong with this definition?

NumberList::~NumberList() {

 ListNode *p; // traversal ptr
 p = head; //start at head of list

 while (p) {

 delete p; // delete current
 p = p->next; // advance ptr
 }
}

33

destructor

l You need to save p->next before deleting p:

NumberList::~NumberList() {

 ListNode *p; // traversal ptr
 ListNode *n; // saves the next node

 p = head; //start at head of list

 while (p) {

 n = p->next; // save the next
 delete p; // delete current
 p = n; // advance ptr
 }
}

in NumberList.cpp

34

Operation:
delete a node from the list

l deleteNode: removes node from list, and deletes
(deallocates) the removed node.

l This is T7 and T10:
- T7: Find a node AND it’s previous neighbor (p&n)
- then do T10: Delete an element, given p and n 
 

NULL

head

5 13 19

pn
Deleting 13 from the list

35

deleteNode code

void NumberList::deleteNode(double num) {

 ListNode *p = head; // to traverse the list
 ListNode *n; // trailing node pointer

 // skip nodes not equal to num, stop at last
 while (p && p->value!=num) {
 n = p; // save it!
 p = p->next; // advance it
 }

 // p not null: num was found, set links + delete
 if (p) {
 if (p==head) { // p points to the first elem.
 head = p->next;
 delete p;
 } else { // n points to the predecessor
 n->next = p->next;
 delete p;
 }
 }

in NumberList.cpp

36

Driver to demo NumberList

// set up the list
NumberList list;
list.appendNode(2.5);
list.appendNode(7.9);
list.appendNode(12.6);
list.displayList();

cout << endl << "remove 7.9:" << endl;
list.deleteNode(7.9);
list.displayList();

cout << endl << "remove 8.9: " << endl;
list.deleteNode(8.9);
list.displayList();

cout << endl << "remove 2.5: " << endl;
list.deleteNode(2.5);
list.displayList();

Output:
2.5 7.9 12.6

remove 7.9:
2.5 12.6

remove 8.9:
2.5 12.6

remove 2.5:
12.6

in ListDriver.cpp

37

Operation:
insert a node into a linked list

l Inserts a new node into the middle of a list.
l This is T7 and T11:
- T7: Find a node AND it’s previous neighbor (p&n) 

we will make p point to the first element > 17
- then do T11: Insert a new element, given p and n 

NULL

head

5 13 19

newNode

17 NULL

pn

38

insertNode code
void NumberList::insertNode(double num) {
 ListNode *newNode; // ptr to new node
 ListNode *p; // ptr to traverse list
 ListNode *n; // node previous to p

 //allocate new node
 newNode = new ListNode;
 newNode->value = num;

 // skip all nodes less than num
 p = head;
 while (p && p->value < num) {
 n = p; // save
 p = p->next; // advance
 }

 if (p == head) { //insert before first
 head = newNode;
 newNode->next = p;
 }
 else { //insert after n
 n->next = newNode;
 newNode->next = p;
 }
}

in NumberList.cpp

39

Driver to demo NumberList

int main() {

 // set up the list
 NumberList list;
 list.appendNode(2.5);
 list.appendNode(7.9);
 list.appendNode(12.6);
 list.displayList();

 list.insertNode (8.5);
 list.displayList();

 list.insertNode (1.5);
 list.displayList();

 list.insertNode (21.5);
 list.displayList();

}

Output:
2.5 7.9 12.6
2.5 7.9 8.5 12.6
1.5 2.5 7.9 8.5 12.6
1.5 2.5 7.9 8.5 12.6 21.5

in ListDriver.cpp

40

List operations, array implementation

l What if we use an array instead of a linked list?
How would these operations be implemented? 
double a[100]; int count;
- create a new, empty list: count=0;
- append a value to the end of the list  

 a[count]=v; count++;
- insert a value within the list shift!
- delete a value (remove it from the list) shift!
- display the values in the list for loop
- delete/destroy the list unnecessary  

41

Advantages of linked lists over
arrays

l A linked list can easily grow or shrink in size.
- Nodes are created in memory as they are needed.
- The programmer doesn’t need to predict how many

elements will be in the list.
l The amount of memory used to store the list is

always proportional to the number of elements in
the list.
- For arrays, the amount of memory used is often much

more than is required by the actual elements in the list.
l When a node is inserted into or deleted from a

linked list, none of the other nodes have to be
moved.

42

Advantages of arrays over linked
lists

l Arrays allow random access to elements: array[i]
- linked lists allow only sequential access to elements

(must traverse list to get to i’th element).

l Arrays do not require extra storage for “links”
- linked lists are impractical for lists of characters or

booleans (pointer value is bigger than data value). 

