Week 1
Operators, Data Types & I/O

Gaddis: Chapters 1, 2, 3

CS 5301
Fall 2016
Jill Seaman

Programming

• A program is a set of instructions that the computer follows to perform a task

• It must be translated from a programming language (C++) to machine code in order to run on the machine.

Structure of a C++ Program

• Hello world:

```cpp
#include <iostream>
using namespace std;

int main() {
    cout << "Hello world!" << endl;
}
```

• In general:

```cpp
#include <iostream> ...
using namespace std;

int main() { ...
    statements ...
}
```

Variables, Data Types

• **Variable**: portion of memory that stores a value

• **Identifier**: name of a program element

• Fundamental data types:

  ```
  short  float  bool
  int  double  char
  long  long double
  ```

• **Variable Declaration** statement:
  ```
  datatype identifier;
  ```

• **Variable Initialization** statement:
  ```
  datatype identifier = constant;
  ```
  ```
  int count = 0;
  ```
Integer types

- Integers are whole numbers such as 12, 7, and -99

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>short</td>
<td>-32,768 to 32,767</td>
</tr>
<tr>
<td>int</td>
<td>-2,147,483,648 to 2,147,483,647</td>
</tr>
<tr>
<td>long</td>
<td>-2,147,483,648 to 2,147,483,647</td>
</tr>
</tbody>
</table>

- `char` type stores characters such as 'A', '@', and '9'
 - The ascii code value (an integer) of the character is stored in memory.

Floating-point types (and bool)

- Floating point types store real numbers such as 12.45 and -3.8
 - They are stored using scientific notation.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>float</td>
<td>±3.4E-38 to ±3.4E38</td>
</tr>
<tr>
<td>double</td>
<td>±1.7E-308 to ±1.7E308</td>
</tr>
<tr>
<td>long double</td>
<td>±1.7E-308 to ±1.7E308</td>
</tr>
</tbody>
</table>

- `bool` type stores values that are true or false
 - false is 0, true is 1.

Constants

- **Literals** (specific value of a given type)

 - 1
 - 75
 - -2
 - 12.45
 - -3.8
 - 6.25e-5
 - true
 - false
 - 'A'
 - '2'

- **Named Constants**: variable whose value cannot be changed

  ```
  const datatype identifier = constant;
  ```

  ```
  const double TAX_RATE = 0.0675;
  ```

Assignment statement, expressions

- To change the value of a variable:

  ```
  variable = expression;
  count = 10;
  ```

 - The lefthand side must be a variable
 - The righthand side is an expression of the right type

 What is an expression?

 - an expression has a type and evaluates to a value
 - literal
 - named constant
 - variable
 - arithmetic expression
 - etc.
Arithmetic Operations

- arithmetic operators:
 - + addition
 - - subtraction
 - * multiplication
 - / division
 - % modulo (remainder)

- Integer division:
 - 14 ÷ 3 = 4 r. 2 (because 4*3+2 = 14)
 - 14/3 => 4 in C++
 - 14%3 => 2 in C++
 - 14.0/3.0 => 4.6666667 in C++

Operator precedence

- In an expression with multiple operators, which one happens first?
- Use this order for different operators:
 - + - (unary)
 - * /, %, +, - (binary)
 - < > <= >=
 - == != && ||
- Use this order for multiple occurrences of the same operator
 - - (unary negation) associates right to left
 - *, /, %, +, - associate left to right

Basic Input/Output

- Output (cout and <<)
 - sends data to the screen (console)
  ```
  cout << expression;
  cout << expr1 << expr2;
  cout << "hello";
  cout << "Count is: " << count << endl;
  ```

- Input (cin and >>)
 - receives data typed in from the keyboard (stops at space)
  ```
  cin >> variable;
  cin >> var1 >> var2;
  cin >> "Enter the height and width: ";
  cin >> height >> width;
  cout << "The height is " << height << endl;
  ```

Formatting output

- Goal: control how output displays for numeric data
- these require `#include<iomanip>`
  ```
  cout << setw(x) << 1234 << setw(x) << 5 << endl;
  ```
- fixed: always use decimal notation (not scientific)
  ```
  cout << fixed << setprecision(2);
  cout << 3.14159 << endl;
  ```
- setprecision(x): when used with fixed, print floating point values using x digits after the decimal
  ```
  cout << fixed << setprecision(2);
  cout << 3.14159 << endl;
  ```
The string class

- **string literals**: represent sequences of chars, inside of double quotes:

  ```
  cout << "Hello";
  ```

- To define string variables:
  ```
  string firstName, lastName;
  ```

- Operations include:
 - `=` for assignment
 - `.size()` function for length
 - `[n]` to access one character in the nth position.

  ```
  string name;
  name = "George";
  cout << name.size() << " ";
  cout << name[2] << endl;
  ```

Type conversions

- **Implicit**
 - assignment:
    ```
    int x;
    double d = 3.1415;
    x = d;
    cout << x << endl;
    ```

 - binary operations:
    ```
    int x = 10;
    double d = 2.3;
    cout << x + d << endl;
    ```

- **Explicit**
  ```
  int x, y;
  ...
  float avg = static_cast<float>(x)/y;
  ```
 or
  ```
  float avg = x/(float)y; //c-style notation
  ```

  ```
  Order of types:
  long double
double
float
long
int
char
  ```

Comments

- **Single-Line Comments**
  ```
  // this text is ignored, to end of line
  ```

- **Multi-Line Comments**
  ```
  /* Anything occurring between a slash star and
   * a star slash is ignored. Even when spanning
   * multiple lines. */
  ```

- Use comments to explain your code to a human reader who knows C++.

Programming Style

- **The visual organization of the source code**
- **Purpose**: improve the readability of the source code
- **Includes**
 - the use of spaces, tabs, and blank lines
 - naming of variables, constants.
 - includes where to use comments.
- **Common elements to improve readability**:
 - Braces `{ }` aligned vertically
 - Indentation of statements within a set of braces
 - Lines shorter than 80 characters.
Sample Problem

- Write a program that converts Celsius temperatures to Fahrenheit temperatures. The formula is

\[F = \frac{9}{5} C + 32 \]

where \(F \) is the Fahrenheit temperature, and \(C \) is the Celsius temperature. Input the Celsius temperature from the user and output the temperature in Fahrenheit.