
1

Week 4
Pointers & Structs

Gaddis: Chapters 9, 11

CS 5301
Fall 2016

Jill Seaman

2

Pointers and Addresses

! The address operator (&) returns the address of a
variable.

! Pointer: a variable that stores the address of another
variable, providing indirect access to it.

! An asterisk is used to define a pointer variable 

! “ptr is a pointer to an int”. It can contain addresses of
int variables.

int x;
cout << &x << endl; // 0xbffffb0c

int *ptr;

ptr = &x;

3

Dereferencing and initializing

! The unary operator * is the dereferencing operator.
! *ptr is an alias for the variable that ptr points to.

! Initialization:

! ptr is a pointer to an int, and it is initialized to the
address of x.

int x = 10;
int *ptr; //declaration, NOT dereferencing
ptr = &x; //ptr gets the address of x
*ptr = 7; //the thing ptr pts to gets 7

int x = 10;
int *ptr = &x; //declaration, NOT dereferencing

4

Pointers as Function Parameters

! Use pointers to implement pass by reference.�
�
�
�
�
�

! How is it different from using reference
parameters?

//prototype: void changeVal(int *);

void changeVal (int *val) {
 *val = *val * 11;
}

int main() {
 int x;
 cout << "Enter an int " << endl;
 cin >> x;
 changeVal(&x);
 cout << x << endl;
}

5

Pointers and Arrays

! You can treat an array variable as if it were a pointer
to its first element.
int numbers[] = {10, 20, 30, 40, 50};

cout << “first: ” << numbers[0] << endl;
cout << “first: ” << *numbers << endl;

cout << &(numbers[0]) << endl;
cout << numbers << endl;

first: 10
first: 10
0xbffffb00
0xbffffb00

Output:

6

Pointer Arithmetic
! When you add a value n to a pointer, you are actually

adding n times the size of the data type being
referenced by the pointer.

! Note: array[index] is equivalent to *(array + index)

int numbers[] = {10, 20, 30, 40, 50};

// sizeof(int) is 4.
// Let us assume numbers is stored at 0xbffffb00
// Then numbers+1 is really 0xbffffb00 + 1*4, or 0xbffffb04
// And numbers+2 is really 0xbffffb00 + 2*4, or 0xbffffb08
// And numbers+3 is really 0xbffffb00 + 3*4, or 0xbffffb0c

cout << “second: ” << numbers[1] << endl;
cout << “second: ” << *(numbers+1) << endl;

cout << "size: " << sizeof(int) << endl;
cout << numbers << endl;
cout << numbers+1 << endl;

second: 20
second: 20
size: 4
0xbffffb00
0xbffffb04

Output:

7

Pointers and Arrays
! pointer operations * + can be used with array

variables.�

! subscript operations: [] can be used with
pointers.�

int list[10];
cin >> *(list+3);

int list[] = {1,2,3};
int *ptr = list;
cout << ptr[2];

8

Comparing Pointers
! pointers (addresses) maybe compared using the

relational operators: �
 < <= > >= == !=

! Examples:�
�

! What is the difference?
− ptr1 < ptr2
− *ptr1 < *ptr2

int arr[25];

cout << (&arr[1] > &arr[0]) << endl;
cout << (arr == &arr[0]) << endl;
cout << (arr <= &arr[20]) << endl;
cout << (arr > arr+5) << endl;

9

Dynamic Memory Allocation

! When a function is called, memory for local
variables is automatically allocated.

! When a function exits, memory for local variables
automatically disappears.

! Must know ahead of time the maximum number of
variables you may need.

! Dynamic Memory allocation allows your program to
create variables on demand, during run-time.

10

The new operator

! “new” operator requests dynamically allocated
memory for a certain data type:�
�

! new operator returns address of newly created
anonymous variable.

! use dereferencing operator to access it:

int *iptr;
iptr = new int;

*iptr = 11;
cin >> *iptr;
int value = *iptr / 3;

11

Dynamically allocated arrays

! dynamically allocate arrays with new:

! Program will throw an exception and terminate if
not enough memory available to allocate

int *iptr; //for dynamically allocated array
int size;

cout << “Enter number of ints: “;
cin >> size;
iptr = new int[size];

for (int i=1; i<size; i++) {
 iptr[i] = i;
}

12

delete!
! When you are finished using a variable created

with new, use the delete operator to destroy it:�
�
�

! Do not “delete” pointers whose values were NOT
dynamically allocated using new!

! Do not forget to delete dynamically allocated
variables (Memory Leaks!!).�

int *ptr;
double *array;

ptr = new int;
array = new double[25];
. . .
delete ptr;
delete [] array; // note [] required for dynamic arrays!

13

Returning Pointers from Functions

! functions may return pointers:�
�
�
�

! The returned pointer must point to
− dynamically allocated memory OR
− an item passed in via an argument

int * findZero (int arr[]) {
 int *ptr;
 ptr = arr;
 while (*ptr != 0)
 ptr++;
 return ptr;
}

NOTE: the return type of this function is
(int *) or pointer to an int.

NOTE: if the function returns dynamically allocated memory,
then it is the responsibility of the calling function to delete it. 14

Returning Pointers from Functions:�
duplicateArray

int a [5] = {11, 22, 33, 44, 55};
int *b = duplicateArray(a, 5);
for (int i=0; i<5; i++)
 if (a[i] == b[i])
 cout << i << “ ok” << endl;
delete [] b; //caller deletes mem

0 ok
1 ok
2 ok
3 ok
4 ok

Output

int *duplicateArray (int arr[], int size) {

 int *newArray;
 if (size <= 0) //size must be positive
 return NULL; //NULL is 0, an invalid address

 newArray = new int [size]; //allocate new array

 for (int index = 0; index < size; index++)
 newArray[index] = arr[index]; //copy to new array

 return newArray;
}

15

Structures
! A structure stores a collection of objects of

various types
! Each element in the structure is a member, and

is accessed using the dot member operator.

Student student1, student2;
student1.name = “John Smith”;
Student student3 = {123456,”Ann Page”,22,”Math”};

struct Student {
 int idNumber;
 string name;
 int age;
 string major;
};

Defines a new data type

Defines new variables

16

Structures: operations

! Valid operations over entire structs:
− assignment: student1 = student2;
− function call: myFunc(gradStudent,x);  

 

! Invalid operations over structs:
− comparison: student1 == student2
− output: cout << student1;
− input: cin >> student2;
− Must do these member by member

void myFunc(Student, int); //prototype

17

Arrays of Structures

! You can store values of structure types in arrays.

! Each student is accessible via the subscript
notation.

! Members of structure accessible via dot notation

Student roster[40]; //holds 40 Student structs

roster[0] = student1; //copy student1 into 1st position

cout << roster[0].name << endl;

18

Arrays of Structures: initialization

! To initialize an array of structs:
struct Student {
 int idNumber;
 string name;
 int age;
 string major;
};

int main()
{
 Student roster[] = {
 {123456,"Ann Page",22,"Math"},
 {111222,"Jack Spade",18,"Physics"}
 };

}

19

Arrays of Structures

! Arrays of structures processed in loops:
Student roster[40];

//input
for (int i=0; i<40; i++) {
 cout << "Enter the name, age, idNumber and "
 << "major of the next student: \n";
 cin >> roster[i].name >> roster[i].age
 >> roster[i].idNumber >> roster[i].major;
}

//output all the id numbers and names
for (int i=0; i<40; i++) {
 cout << roster[i].idNumber << endl;
 cout << roster[i].name << endl;
} 20

Passing structures to functions
! Structure variables may be passed as

arguments to functions:
void getStudent(Student &s) { // pass by reference
 cout << "Enter the name, age, idNumber and "
 << "major of the student: \n";
 cin >> s.name >> s.age >> s.idNumber >> s.major;
}

void showStudent(Student x) {
 cout << x.idNumber << endl;
 cout << x.name << endl;
 cout << x.age << endl;
 cout << x.major << endl;
}

// in main:
Student student1;
getStudent(student1);
showStudent(student1);

21

Pointers to structures

! We can define pointers to structures

! To access the members via the pointer:

! dot operator has higher precedence, so use ():

! or equivalently, use ->:

Student s1 = {12345,“Jane Doe”, 18, “Math”};
Student *ptr = &s1;

cout << *ptr.name << end; // ERROR: *(ptr.name)

cout << (*ptr).name << end;

cout << ptr->name << end;
22

Dynamically Allocating Structures

! Structures can be dynamically allocated with new:

! Arrays of structures can also be dynamically
allocated:

Student *sptr;
sptr = new Student;

sptr->name = “Jane Doe”;
sptr->idNum = 12345;
...
delete sptr;

Student *sptr;
sptr = new Student[100];
sptr[0].name = “John Deer”;
...
delete [] sptr;

No arrows (->) necessary.
It’s just an array of Student

