[o [S ot Proc

Basic C++ tructure of a C++ Program

(What you should already know) * Hello world:

//This program outputs a message to the screen
#include <iostream>

Chapters 1-5 using namespace std;

int main() {
cout << “Hello world!” << endl;

}

CS 2308
: * In general:
Spring 2017
//This is a comment
. #include <includefile> ...
J|” Seaman using namespace std;
int main() {
statements ...

}

Variables, Data Types Constants

« Variable: portion of memory that stores a value - Literals (specific value of a given type)

* ldentifier: name of a program element

1 12.45 true ‘A’
75 -3.8 fal ‘2
- Fundamental data types 5 6.350-5 —
short float bool
int double char
long long double

- Named Constants:

* Variable Declaration statement variable whose value cannot be changed

’datatype identifier; ‘ ’float hours; ‘

’const datatype identifier = constant; ‘

- Variable Initialization statement:

’datatype identifier = constant; ‘ ’int count = 0; ‘

’const double TAX_RATE = 0.0675; ‘

3

[el * { it

ssignment statement, expressions rithmetic and Relational Operations

To change the value of a variable: arithmetic operators:
lvariable = expression; ‘ ’count = 10; ‘ + addition x + 10
]] - subtraction Z; 5 g . 1o
The lefthand side must be a variable * multiplication
/ division L
The righthand side is an expression of the right type % modulo Watchout: Integer division!!
What is an expression? relational operators (result is bool):
an expression has a type and evaluates to a value E
== Equal to
literal I= Not equal to ;;zisx
named constant > Greater than x%21=0
< Lessthan 8 + 5 * 10 <=100 * n
variable >= Greater than or equal to
arithmetic expression <= Less than or equal to
tc 5 6 THQ1
elc.
Logical Operations, precedence More assignment statements
logical operators (values and results are bool): Compound assignment
I not x < 10 && X > 0 operator usage equivalent syntax:
;&&an §!,(:.==iobl| y == 20 += X += e; X =X + e;
Il or -= X -= e; X = X - e;
/= x /= e; x =x/ e;
operator precedence (which happens first?): increment, decrement
!+_ (unary) operator usage equivalent syntax:
! % I(y == 10) || vy == 20 && x > 3 * z ++ x++; ++x; [x = x + 1;
+ - (binary) __ e—r % k= x - 1:
<><=>= ’ 7 7
== !:
&&
1l 7 8

—

Type conversions

Implicit
. int x;
assignment: | double a = 3.1415;
x = d;
cout << x << endl;

binary operations:

double d = 2.3;
cout << x + d << endl;

the type of expression on the
right will be converted to type
of variable on left, possibly
losing information.

int x = 10; the operand with the lower ranking type
is converted to the type of the other.

Order of types:
Explicit double
float
int x, y; long
float avg = static_cast<float>(x)/y; int
char
or
’float avg = x/(float)y; //c-style notation ‘ 9 THQ2

Control structures:

If and else if (expression)

statementl
else
statement2

if else

statement may be a
compound statement
(a block: {statements})

if expression is true, statement1 is executed
if expression is false, statement2 is executed

the else is optional: |*f (expression)

statement

nested if else

if (expressionl)
statementl

else if (expression2)
statement?2

else if (expression3)
statement3

else

K statement4

—

Basic Input/Output

Output (cout and <<)

cout << expression;
cout << exprl << expr2;

cout << “hello”;

cout << “Count is: “ << count << endl;

Input (cin and >>)

cin >> variable;
cin >> varl >> var2;

right hand side must be a variable!

cin >> x;
cout << “Enter the height
cin >> height >> width;

and width: “;

Control structures: loops

. statement may be a
Whlle while (expression) compound statement
statement (a block: {statements})

if expression is true, statement is executed, repeat

for:

statement

for (exprl; expr2; expr3)

equivalent to: |expri;

while (expr2) {

statement
expr3;
- }
do while:
do statement is executed.
statement if expression is true, then repeat
while (expression); 12

—

switch stmt;:

Control structures: switch

switch (expression) {
case constant: statements

case constant: statements
default: statements

}
execution starts at the case labeled with the value of
the expression.

if no match, start at default
use break to exit switch (usually at end of statements)
example:[switeh (ch) ¢

case ‘a’:

case ‘A’: cout << “Option A”";
break;

case ‘b’:

case ‘B’: cout << “Option B”;
break;

default: cout << “Invalid choice”;

File Input/Output

#include <fstream>
Output (ofstream)

ofstream fout;
fout.open(“filename.txt”);

fout << “hello”;

fout << “Count is: “ << count << endl;
fout.close();

Input (ifstream)

ifstream fin;

fin.open(“data.txt”);

if (!fin) { Check for file open errors
cout << “error opening file” << endl;
return (0);

}

int x;))]
fin >> x; right hand side must be a variable!
cout << “x is “ << x << endl;

L\ fin.close();

—

The string class

’cout << *“Hello"”;

To define string variables:

’string firstName, lastName; ‘

Operations include:

string literals: represent sequences of chars:

= for assignment

string name = “George”;
for (int i=0; i<name.size(); i++)
cout << name[i] <<

u u

T

.size() member function for length

==, <, ... relational operators (alphabetical order)
[n] to access one character

14

