
1

Final Exam Exercises

CS 2308
Spring 2017

Jill Seaman

2

Chapters 1-7 + 11
Write C++ code to:
l Determine if a number is odd or even
l Determine if a number/character is in a range
- 1 to 10 (inclusive)
- between ‘a’ and ‘z’ (inclusive)

l Assign a category based on ranges (wind speed)
- Tropical Depression: <38mph
- Tropical Storm: 39-73mph
- Hurricane: >=74mph

3

Chapters 1-7 + 11
Write C++ code to:
l Pass arguments by value and reference
- Return multiple values from a function: 

 compute the area AND perimeter of a rectangle
l Process an Array:
- find maximum/minimum value
- sum/average/count values passing a test (>100)

4

Binary Search
Example

5

The target of your search is 39. Given the following array of integers (values
on top, indexes on bottom), record the values that 39 is compared to in each
iteration of a binary search.

Repeat the exercise with a target of 179.

67 14 42 20

1 7 8 14 20 42 55 67 78 101 112 122 170 179 190

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Solution for 39 (which is not in the list):

5

Example Sorting Problem
Given the following list of integers, show what order the integers
would be in after executing:
a) one complete pass of the bubble sort
b) two passes of the selection sort.  

Assume the following numbers are in an array (subscripts along the
bottom).

112 73 8 140 22 42 88 67

0 1 2 3 4 5 6 7

6

Algorithm Efficiency
Big O Notation

• In order of increasing growth (less efficiency)
- O(1) constant
- O(log n) logarithmic
- O(n) linear
- O(n log n) linearithmic
- O(n2) quadratic

• when using big O notation to describe the
efficiency of an algorithm:
- what does n represent?
- what does the function inside the () describe?

7

Algorithm Efficiency
Give the efficiency of each using big-O notation

l Linear search
l Binary search on an already sorted list
l Bubble sort
l Selection sort
l Access one element in an array
l Array processing:

- sum, average, show list, find max/min
- delete all elements

8

Algorithm Efficiency
Give the efficiency of each using big-O notation

l Linked list operations:
- insert at head
- append (with no tail pointer)
- delete a node with a given value
- destructor (“delete” all nodes)
- access one element (by index)
- sum, average, show list, find max/min (traversal)
- the sort we did in PA5

if you have to traverse the list, it’s O(n).
if you have to traverse the list once for
each element, it’s O(n2)

9

Pointers
l Tracing code with pointers, what is output?

int *ptr1, *ptr2;
int foo1, foo2 = 13;

ptr1 = &foo1;
ptr2 = &foo2;
foo1 = 42;
cout << "*ptr1 - " << *ptr1 << endl;
cout << "*ptr2 - " << *ptr2 << endl;

ptr1 = ptr2;
cout << "foo1 - " << foo1 << endl;
cout << "foo2 - " << foo2 << endl;

ptr2 = &foo1;
*ptr1 = *ptr2;
cout << "foo1 - " << foo1 << endl;
cout << "foo2 - " << foo2 << endl;

10

Pointers
l Rewrite using pointer notation instead of []:

l Write a function to swap the values of its
parameters, using pointers instead of pass by
reference.

l Write a function to double the size of an array, by
dynamically allocating a new array that is twice as
big, and copying the elements from the original.
- who is responsible for deallocating this dynamically

allocated array? What statement is used to
deallocate it?

for (int x = 0; x < 100; x++)
 cout << array[x] << endl;

11

Linux Commands
l What linux command would you use to:

A. List (display) the files in the current directory?
B. Display the name of the current directory?
C. Make a new directory called Assignments?
D. Make Assignments the current directory?
E. Edit a file called myFile.txt?
F. Compile a file called myProg.cpp?
G. View the contents of myProg.cpp on the screen?
H. Delete the file myProg.cpp?
I. Execute a makefile?
J. Compile a file called a.cpp to an object file?

12

Classes
l Give the class declaration, and function

implementations:
Consider a Student class, which stores a student using three
values: a name (string) an ID number (int) and a grade (double).
It has 2 constructors (one default, one with 3 arguments), and set
and get function for the name and grade.
The default student has an empty string for the name, and 0 for
the other two variables. The other constructor takes the initial
name, ID number, and grade.
There is a function print() that outputs the three values.
The student also has a function letter() that calculates and
returns the letter grade corresponding to the grade (‘A’ if grade is
90 or more, ‘B’ if grade is 80 or more (but less than 90), etc).

13

Linked Lists
l Write a function that takes an array of ints and

converts it to a linked list by inserting each
element to the front of the list (the order will be
reversed). Return a pointer to the first node.

struct Node {
 int data;
 Node *next;
};

Node *convertReverse (int list[], int size) {

}

Spoiler alert! Solution on next slide.

14

Linked Lists
l Write a function that takes an array of ints and

converts it to a linked list by inserting each
element to the front of the list (the order will be
reversed).

struct Node {
 int data;
 Node *next;
};

Node *convertReverse (int list[], int size) {
 Node *head = NULL;
 for (int i=0; i<size; i++) {
 Node *newNode = new Node;
 newNode->data = list[i];
 newNode->next = head;
 head = newNode;
 }
 return head;
}

15

Stacks and Queues
exercises

Suppose the following operations are performed
on an empty stack. Insert numbers in the diagram
to show what will be stored in the stack after the
operations have executed (label the top):

int x;  
push(3);  
push(5);  
push(9);  
x = pop();  
push(2);  
x = pop();  
push(0);

16

Stacks and Queues
exercises

Suppose the following operations are performed
on an empty queue. Insert numbers in the diagram
to show what will be stored in the queue after the
operations have executed (label the front+rear):

int x;  
enqueue(3);  
enqueue(5);  
enqueue(9);  
x = dequeue();  
enqueue(2);  
x = dequeue();  
enqueue(0);

17

Disclaimer
l The exercises in this lecture do not cover ALL of

the material that will be on the final exam.
l These exercises do provide some sample exam

questions (though many will be in multiple
choice format on the exam).

l There will be questions that will require writing
programs or functions or class declarations and
implementations.

l There will be questions (mostly multiple choice)
that will test your understanding of the concepts
we have covered (vocabulary, etc).

