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Why study GUIs?
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} Learn about event-driven 
programming techniques 

} Practice learning and using a 
large, complex API 

} A chance to see how it is 
designed and learn from it 

} Because GUIs are neat!

Java GUI example

Java GUI libraries
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} Swing: the main Java GUI library 
} Benefits: Features; cross-platform compatibility; OO design – Paints GUI controls itself pixel-

by-pixel 
} Does not delegate to OS’s window system 

} Abstract Windowing Toolkit (AWT): Sun's initial GUI library 
} Maps Java code to each operating system's real GUI system 
} Problems: Limited to lowest common denominator (limited set of UI widgets); clunky to 

use. 

} SWT + JFace 
} Mixture of native widgets and Java rendering; created for Eclipse for faster performance 

} Others 
} Apache Pivot, SwingX, JavaFX, ... 

} Advice: Use Swing. You occasionally have to use AWT (Swing is built on top of 
AWT). Beware: it’s easy to get them mixed up.

GUI terminology
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} window: A first-class citizen of the graphical desktop 
} Also called a top-level container 
} Examples: frame, dialog box, applet 

} component: A GUI widget that resides in a window 
} Also called controls in many other languages 
} Examples: button, text box, label 

} container: A component that hosts (holds) components 
} Examples: panel, box



Basic Elements
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} Components: 
} Button / List / Checkbox / Choice / TextField / Etc. 

} Containers (subclass of Component): 
} Panel / Window / Dialog / Applet / Frame / Etc. 

} Menu Components 
} Menu / Menu bar / Etc. 

} Layout Managers 
} BorderLayout / GridLayout / Etc. 

} Events 
} MouseEvent / MouseMotionEvent / ItemEvent / Etc. 

} Graphics 
} Graphics / Image / Color / Font / FontMetrics / Etc.

Components
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AWT Components, Containers, and Layout 
Managers 
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Swing/AWT inheritance hierarchy
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Component fields/properties
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} Each has a get (or is) accessor and a set modifier. 
} Examples: getColor, setFont, isVisible, …

Types of containers
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} Top-level containers: JFrame, JDialog, … 
} Often correspond to OS windows 
} Can be used by themselves, but usually as a host for other 

components 
} Live at top of UI hierarchy, not nested in anything else 

} Mid-level containers: panels, scroll panes, tool bars 
} Sometimes contain other containers, sometimes not 
} JPanel is a general-purpose component for drawing or hosting other 

UI elements (buttons, etc.) 

} Specialized containers: menus, list boxes, … 

} Technically, all J-components are containers

Swing window example
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JFrame 

JPanel 

JButton 

JTextField 

JFrame – top-level window
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} Graphical window on the screen 

} Typically holds (hosts) other components 

} Common methods: 
} JFrame(String title) – constructor, title optional
} setSize(int width, int height) – set size
} add(Component c) – add component to window
} setVisible(boolean v) – make window visible or not. 

Don’t forget this!



JFrame
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} Frame window has decorations  
} title bar 
} close box 
} provided by windowing system 

} Basic code to create a frame: 
JFrame frame = new JFrame();  
frame.pack();   // Fit frame to its contents  
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
frame.setVisible(true);

Example: SimpleFrameMain
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import java.awt.*;  
import javax.swing.*;  
 
public class SimpleFrameMain {  
  public static void main(String[] args) {  
    SimpleFrame frame = new SimpleFrame("A Window");
    // frame.pack();  
    frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);  
    frame.setVisible(true);  
  }  
}  
 
class SimpleFrame extends JFrame {  
  public SimpleFrame(String title) {  
    super(title);  
    setSize(300,200);  
  }  
}

More JFrame
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} public void setDefaultCloseOperation(int op)  
Makes the frame perform the given action when it closes. 
} Common value passed: JFrame.EXIT_ON_CLOSE

} Other possible values:  
DO_NOTHING_ON_CLOSE  
HIDE_ON_CLOSE  
DISPOSE_ON_CLOSE 

} If not set, the program will never exit even if the frame is closed. 

} public void setSize(int width, int height)  
Gives the frame a fixed size in pixels. 

} public void pack()  
Resizes the frame to fit the components inside it snugly.

JPanel – a general-purpose container
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} Commonly used as a place for graphics, or to hold a collection of 
button, labels, etc. 

} Needs to be added to a window or other container 
frame.add(new Jpanel(…)) 

} JPanels can be nested to any depth 

} Many methods/fields in common with JFrame (since both inherit 
from Component) 

} Advice: can’t find a method/field? Check the superclass(es) 

} Some new methods. Particularly useful: 
} setPreferredSize(Dimension d)



JPanel – a general-purpose container
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Sizing and positioning
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How does the programmer specify where each component 
appears, how big each component should be, and what the 
component should do if the window is resized / moved / 
maximized / etc.? 

} Absolute positioning (C++, C#, others): 
} Programmer specifies exact pixel coordinates of every component. 

} "Put this button at (x=15, y=75) and make it 70x31 px in size." 

} Layout managers (Java): 
} Objects that decide where to position each component based on 

some general rules or criteria. 
} "Put these four buttons into a 2x2 grid and put these text boxes in a 

horizontal flow in the south part of the frame."

Containers and layout
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} What if we add several components to a container? How are 
they positioned relative to each other? 

} Answer: each container has a layout manger.

Layout managers
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} Kinds: 
} FlowLayout (left to right, top to bottom) – default for Jpanel 
} BorderLayout (“center”, “north”, “south”, “east”, “west”) – 

default for Jframe 
} GridLayout (regular 2-D grid) 
} others... (some are incredibly complex) 

} The first two should be good enough for now. 
} E.g.: contentPane.setLayout(new BorderLayout(0,0)); 



JFrame as container
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A JFrame is a container. Containers have these methods: 

} public void add(Component comp)
} public void add(Component comp, Object info)

Adds a component to the container, possibly giving extra information about 
where to place it. 

} public void remove(Component comp)

} public void setLayout(LayoutManager mgr)
Uses the given layout manager to position components. 

} public void validate()
Refreshes the layout (if it changes after the container is onscreen).

Preferred sizes
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} Swing component objects each have a certain size they 
would "like" to be: Just large enough to fit their contents 
(text, icons, etc.). 
} This is called the preferred size of the component. 
} Some types of layout managers (e.g. FlowLayout) choose to size 

the components inside them to the preferred size. 
} Others (e.g. BorderLayout, GridLayout) disregard the preferred 

size and use some other scheme to size the components.

Graphics and drawing
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} What if we want to actually draw something? A map, an 
image, a path, ...? 

} Answer: Override method paintComponent
} Method in JComponent that draws the component 
} In JLabel’s case, it draws the label text.

Graphics vs Graphics2D
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} Class Graphics was part of the original Java AWT 
} Has a procedural interface: g.drawRect(…), g.fillOval(…) 

} Swing introduced Graphics2D 
} Added a object interface – create instances of Shape like Line2D, 
Rectangle2D, etc., and add these to the Graphics2D object 

} Parameter to paintComponent is always Graphics2D. 

} Can always cast it to that class. Graphics2D supports both sets 
of graphics methods.



Who calls paintComponent? And when??
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} Answer: the window manager calls paintComponent whenever it 
wants!!! 
} When the window is first made visible, and whenever after that it is needed. 

} Corollary: paintComponent must always be ready to repaint – 
regardless of what else is going on 
} You have no control over when or how often – must store enough 

information to repaint on demand 

} If you want to redraw a window, call repaint() from the program 
(not from paintComponent) 
} Tells the window manager to schedule repainting 
} Window manager will call paintComponent when it decides to redraw 

(soon, but maybe not right away)

Rules for painting
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} Always override paintComponent(g) if you want to draw on a 
component. 

} Always call super.paintComponent(g) first. 

} NEVER call paintComponent yourself. 

} Always paint the entire picture, from scratch. 

} Use paintComponent’s Graphics parameter to do all the drawing. ONLY 
use it for that. Don’t copy it, try to replace it, permanently side-effect it, etc. 
It is quick to anger. 

} DON’T create new Graphics or Graphics2D objects 

} Fine print: Once you are a certified™ wizard, you may find reasons to do things differently, but you 
aren’t there yet.

Event-driven programming
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A style of coding where a program's overall flow of execution is dictated by 
events. 
} The program loads, then waits for user input events. 
} As each event occurs, the program runs particular code to respond. 
} The overall flow of what code is executed is determined by the series of 

events that occur 
} Contrast with application- or algorithm-driven control where program 

expects input data in a pre-determined order and timing 
} Typical of large non-GUI applications like web crawling, payroll, batch simulation

Event-driven programming
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} The main body of the program is an event loop.  Abstractly:  
do {

    e = getNextEvent();
    process event e;

} while (e != quit);



Graphical events
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} event: An object that represents a user's interaction with a 
GUI component; can be "handled" to create interactive 
components. 

} listener: An object that waits for events and responds to them. 
} To handle an event, attach a listener to a component. 
} The listener will be notified when the event occurs (e.g. button click).

Kinds of GUI events
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} Mouse move/drag/click, mouse button press/release 

} Keyboard: key press/release, sometimes with modifiers like shift/
control/alt/… 

} Touchscreen finger tap/drag 

} Joystick, drawing tablet, other device inputs 

} Window resize/minimize/restore/close 

} Network activity or file I/O (start, done, error) 

} Timer interrupt (including animations)

Action events
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} action event: An action that has occurred on a GUI 
component. 
} The most common, general event type in Swing. Caused by: 

} button or menu clicks, 
} check box checking / unchecking, 
} pressing Enter in a text field, ... 

} Represented by a class named ActionEvent
} Handled by objects that implement interface ActionListener

Implementing a Listener (Observer)
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public class MyClass implements ActionListener {
    public void actionPerformed(ActionEvent event) {
        code to handle the event;
    }
}

JButton and other graphical components have this method:

/** Attaches the given listener to be notified of clicks and 
events that occur on this component. */
public void addActionListener(ActionListener al)

e.g. 
button.addActionListener(new MyClass());



Example: button
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} Create a JButton and add it to a window 
} public JButton(String text) Creates a new button with the 

given string as its text.
} public String getText() Returns the text showing on the button.
} public void setText(String text) Sets button's text to be the 

given string.

} Create an object that implements ActionListener 
(containing an actionPerformed method) 

} Add the listener object to the button's listeners
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import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*;  
 
public class ButtonDemo1 {  
  // inner class to handle button events  
  private static class ButtonListener implements ActionListener {  
    private int nEvents = 0;  
     
    public void actionPerformed(ActionEvent e) {  
      nEvents++;  
      System.out.println(e.getActionCommand() + " " + nEvents);  
    }  
  }  
   
  public static void main(String[] args) {  
    JFrame frame = new JFrame("Button Demo");  
    frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);  
     
    // create a new button with label "Hit me" and string "OUCH!" to be  
    // returned as part of each action event  
    JButton button = new JButton("Hit me");  
    button.setActionCommand("OUCH!");  
    button.addActionListener(new ButtonListener());  
     
    // Add button to the window and make it visible  
    frame.add(button); frame.pack(); frame.setVisible(true);  
  }  
}
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import java.awt.*;         // basic awt classes  
import java.awt.event.*;   // event classes  
import javax.swing.*;      // swing classes  
 
public class ButtonDemo2 {  
   
  public static void main(String[] args) {  
    JFrame frame = new JFrame("Button Demo");  
    frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);  
     
    // create a new button with label "Hit me" and string "OUCH!" to be  
    // returned as part of each action event  
    JButton button = new JButton("Hit me");  
    button.setActionCommand("OUCH!");  
     
    // Create and register a new button listener to handle clicks  
    button.addActionListener(new ActionListener () {  
      int nEvents = 0; // number of events handled  
      public void actionPerformed(ActionEvent e) {  
        nEvents++;  
        System.out.println(e.getActionCommand() + " " + nEvents);  
      }  
    });  
     
    // Add button to the window and make it visible  
    frame.add(button);  
    frame.pack();  
    frame.setVisible(true);  
  }  
}

Program thread and UI thread
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} The program and user interface run in concurrent threads. 

} All UI actions happen in the UI thread – even when they execute callbacks 
to code like actionListener, etc. defined in your program. 
} Any updates to the user interface must happen on the event dispatch thread. 

} Event handlers usually should not do a lot of work. 

} If the event handler does a lot of computing, the user interface will appear 
to freeze up.



Program thread and UI thread
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} If there’s lots to do, the event handler should start a new thread or set a bit 
that the program thread will notice.  

} Do the heavy work back in the program thread. 

} When the heavy work finishes, the UI is notified to update the view. 

Suppose we have a button that launches a series of database queries. We 
dutifully start up a new thread so that our queries won't block the user 
interface:

JButton b = new JButton("Run query");  
b.addActionListener(new ActionListener() {  
  public void actionPerformed(ActionEvent e) {  
    Thread queryThread = new Thread() {  
      public void run() {  
        runQueries();  
      }  
    };  
    queryThread.start();  
  }  
});

Program thread and UI thread
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} But now, from our query thread, we want 
to update a progress bar or some other 
component showing the current progress 
to the user.  

} How can we do this if we're no longer in 
the event dispatch thread? Well, the 
SwingUtilities class, which provides 
various useful little calls, includes a 
method called invokeLater().  
} This method allows us to post a "job" to 

Swing, which it will then run on the event 
dispatch thread at its next convenience.  

So here is how to use 
SwingUtilities.invokeLater() 
from our runQueries method: 

// Called from non-UI thread  
private void runQueries() {  
  for (int i = 0; i < noQueries; i++) {  
    runDatabaseQuery(i);  
    updateProgress(i);  
  }  
}  
 
private void updateProgress(final int queryNo) {  
  SwingUtilities.invokeLater(new Runnable() {  
    public void run() {  
      // Here, we can safely update the GUI  
      //because we'll be called from the  
      // event dispatch thread  
      statusLabel.setText("Query: " + queryNo);  
    }  
  });  
}

Application startup code
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} There's one place where it's very easy to forget that we need 
SwingUtilities.invokeLater(), and that's on application startup.  

} Our applications main() method will always be called by the main program thread 
that the VM starts up for us.  

} If we have code to update the GUI there, it may interfere with the UI thread. 

} The code that initializes our GUI must also take place in an invokeLater().
public class MyApplication extends JFrame {  
 
  public static void main(String[] args) {  
    SwingUtilities.invokeLater(new Runnable() {  
      public void run() {  
        MyApplication app = new MyApplication();  
        app.setVisible(true);  
      }  
    });  
  }  
 
  private MyApplication() {  
    // create UI here: add buttons, actions etc  
  }  
}

Better implementation of ButtonDemo
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public class ButtonDemo3 extends JFrame {  
   
  private ButtonDemo3(String title) { //  
    super(title);  
    this.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);  
    Component c = this;  
     
    JButton button = new JButton("Hit me");  
    button.setActionCommand("OUCH!");  
     
    button.addActionListener(new ActionListener () {  
      int nEvents = 0; // number of events handled  
      public void actionPerformed(ActionEvent e) {  
        nEvents++;  
        JOptionPane.showMessageDialog(c, e.getActionCommand() + " " + nEvents);  
      }  
    });  
    this.add(button); this.pack(); this.setVisible(true);  
  }  
   
  public static void main(String[] args) {  
    SwingUtilities.invokeLater(new Runnable() {  
      public void run() {  
        ButtonDemo3 app = new ButtonDemo3("Button Demo");  
        app.setVisible(true);  
      }  
    });  
  }  
}


