
Java GUI Programming

*Adapted from a lecture by Vangelis Metsis

CS 3354

Spring 2017

Jill Seaman

1

Why study GUIs?

2

} Learn about event-driven
programming techniques

} Practice learning and using a
large, complex API

} A chance to see how it is
designed and learn from it

} Because GUIs are neat!

Java GUI example

Java GUI libraries

3

} Swing: the main Java GUI library
} Benefits: Features; cross-platform compatibility; OO design – Paints GUI controls itself pixel-

by-pixel
} Does not delegate to OS’s window system

} Abstract Windowing Toolkit (AWT): Sun's initial GUI library
} Maps Java code to each operating system's real GUI system
} Problems: Limited to lowest common denominator (limited set of UI widgets); clunky to

use.

} SWT + JFace
} Mixture of native widgets and Java rendering; created for Eclipse for faster performance

} Others
} Apache Pivot, SwingX, JavaFX, ...

} Advice: Use Swing. You occasionally have to use AWT (Swing is built on top of
AWT). Beware: it’s easy to get them mixed up.

GUI terminology

4

} window: A first-class citizen of the graphical desktop
} Also called a top-level container
} Examples: frame, dialog box, applet

} component: A GUI widget that resides in a window
} Also called controls in many other languages
} Examples: button, text box, label

} container: A component that hosts (holds) components
} Examples: panel, box

Basic Elements

5

} Components:
} Button / List / Checkbox / Choice / TextField / Etc.

} Containers (subclass of Component):
} Panel / Window / Dialog / Applet / Frame / Etc.

} Menu Components
} Menu / Menu bar / Etc.

} Layout Managers
} BorderLayout / GridLayout / Etc.

} Events
} MouseEvent / MouseMotionEvent / ItemEvent / Etc.

} Graphics
} Graphics / Image / Color / Font / FontMetrics / Etc.

Components

6

AWT Components, Containers, and Layout
Managers

7

Swing/AWT inheritance hierarchy

8

Component fields/properties

9

} Each has a get (or is) accessor and a set modifier.
} Examples: getColor, setFont, isVisible, …

Types of containers

10

} Top-level containers: JFrame, JDialog, …
} Often correspond to OS windows
} Can be used by themselves, but usually as a host for other

components
} Live at top of UI hierarchy, not nested in anything else

} Mid-level containers: panels, scroll panes, tool bars
} Sometimes contain other containers, sometimes not
} JPanel is a general-purpose component for drawing or hosting other

UI elements (buttons, etc.)

} Specialized containers: menus, list boxes, …

} Technically, all J-components are containers

Swing window example

11

JFrame

JPanel

JButton

JTextField

JFrame – top-level window

12

} Graphical window on the screen

} Typically holds (hosts) other components

} Common methods:
} JFrame(String title) – constructor, title optional
} setSize(int width, int height) – set size
} add(Component c) – add component to window
} setVisible(boolean v) – make window visible or not.

Don’t forget this!

JFrame

13

} Frame window has decorations
} title bar
} close box
} provided by windowing system

} Basic code to create a frame:
JFrame frame = new JFrame();  
frame.pack(); // Fit frame to its contents  
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
frame.setVisible(true);

Example: SimpleFrameMain

14

import java.awt.*;  
import javax.swing.*;  
 
public class SimpleFrameMain {  
 public static void main(String[] args) {  
 SimpleFrame frame = new SimpleFrame("A Window");
 // frame.pack();  
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);  
 frame.setVisible(true);  
 }  
}  
 
class SimpleFrame extends JFrame {  
 public SimpleFrame(String title) {  
 super(title);  
 setSize(300,200);  
 }  
}

More JFrame

15

} public void setDefaultCloseOperation(int op)  
Makes the frame perform the given action when it closes.
} Common value passed: JFrame.EXIT_ON_CLOSE

} Other possible values:  
DO_NOTHING_ON_CLOSE  
HIDE_ON_CLOSE  
DISPOSE_ON_CLOSE

} If not set, the program will never exit even if the frame is closed.

} public void setSize(int width, int height)  
Gives the frame a fixed size in pixels.

} public void pack()  
Resizes the frame to fit the components inside it snugly.

JPanel – a general-purpose container

16

} Commonly used as a place for graphics, or to hold a collection of
button, labels, etc.

} Needs to be added to a window or other container
frame.add(new Jpanel(…))

} JPanels can be nested to any depth

} Many methods/fields in common with JFrame (since both inherit
from Component)

} Advice: can’t find a method/field? Check the superclass(es)

} Some new methods. Particularly useful:
} setPreferredSize(Dimension d)

JPanel – a general-purpose container

17

Sizing and positioning

18

How does the programmer specify where each component
appears, how big each component should be, and what the
component should do if the window is resized / moved /
maximized / etc.?

} Absolute positioning (C++, C#, others):
} Programmer specifies exact pixel coordinates of every component.

} "Put this button at (x=15, y=75) and make it 70x31 px in size."

} Layout managers (Java):
} Objects that decide where to position each component based on

some general rules or criteria.
} "Put these four buttons into a 2x2 grid and put these text boxes in a

horizontal flow in the south part of the frame."

Containers and layout

19

} What if we add several components to a container? How are
they positioned relative to each other?

} Answer: each container has a layout manger.

Layout managers

20

} Kinds:
} FlowLayout (left to right, top to bottom) – default for Jpanel
} BorderLayout (“center”, “north”, “south”, “east”, “west”) –

default for Jframe
} GridLayout (regular 2-D grid)
} others... (some are incredibly complex)

} The first two should be good enough for now.
} E.g.: contentPane.setLayout(new BorderLayout(0,0));

JFrame as container

21

A JFrame is a container. Containers have these methods:

} public void add(Component comp)
} public void add(Component comp, Object info)

Adds a component to the container, possibly giving extra information about
where to place it.

} public void remove(Component comp)

} public void setLayout(LayoutManager mgr)
Uses the given layout manager to position components.

} public void validate()
Refreshes the layout (if it changes after the container is onscreen).

Preferred sizes

22

} Swing component objects each have a certain size they
would "like" to be: Just large enough to fit their contents
(text, icons, etc.).
} This is called the preferred size of the component.
} Some types of layout managers (e.g. FlowLayout) choose to size

the components inside them to the preferred size.
} Others (e.g. BorderLayout, GridLayout) disregard the preferred

size and use some other scheme to size the components.

Graphics and drawing

23

} What if we want to actually draw something? A map, an
image, a path, ...?

} Answer: Override method paintComponent
} Method in JComponent that draws the component
} In JLabel’s case, it draws the label text.

Graphics vs Graphics2D

24

} Class Graphics was part of the original Java AWT
} Has a procedural interface: g.drawRect(…), g.fillOval(…)

} Swing introduced Graphics2D
} Added a object interface – create instances of Shape like Line2D,
Rectangle2D, etc., and add these to the Graphics2D object

} Parameter to paintComponent is always Graphics2D.

} Can always cast it to that class. Graphics2D supports both sets
of graphics methods.

Who calls paintComponent? And when??

25

} Answer: the window manager calls paintComponent whenever it
wants!!!
} When the window is first made visible, and whenever after that it is needed.

} Corollary: paintComponent must always be ready to repaint –
regardless of what else is going on
} You have no control over when or how often – must store enough

information to repaint on demand

} If you want to redraw a window, call repaint() from the program
(not from paintComponent)
} Tells the window manager to schedule repainting
} Window manager will call paintComponent when it decides to redraw

(soon, but maybe not right away)

Rules for painting

26

} Always override paintComponent(g) if you want to draw on a
component.

} Always call super.paintComponent(g) first.

} NEVER call paintComponent yourself.

} Always paint the entire picture, from scratch.

} Use paintComponent’s Graphics parameter to do all the drawing. ONLY
use it for that. Don’t copy it, try to replace it, permanently side-effect it, etc.
It is quick to anger.

} DON’T create new Graphics or Graphics2D objects

} Fine print: Once you are a certified™ wizard, you may find reasons to do things differently, but you
aren’t there yet.

Event-driven programming

27

A style of coding where a program's overall flow of execution is dictated by
events.
} The program loads, then waits for user input events.
} As each event occurs, the program runs particular code to respond.
} The overall flow of what code is executed is determined by the series of

events that occur
} Contrast with application- or algorithm-driven control where program

expects input data in a pre-determined order and timing
} Typical of large non-GUI applications like web crawling, payroll, batch simulation

Event-driven programming

28

} The main body of the program is an event loop. Abstractly:  
do {

 e = getNextEvent();
 process event e;

} while (e != quit);

Graphical events

29

} event: An object that represents a user's interaction with a
GUI component; can be "handled" to create interactive
components.

} listener: An object that waits for events and responds to them.
} To handle an event, attach a listener to a component.
} The listener will be notified when the event occurs (e.g. button click).

Kinds of GUI events

30

} Mouse move/drag/click, mouse button press/release

} Keyboard: key press/release, sometimes with modifiers like shift/
control/alt/…

} Touchscreen finger tap/drag

} Joystick, drawing tablet, other device inputs

} Window resize/minimize/restore/close

} Network activity or file I/O (start, done, error)

} Timer interrupt (including animations)

Action events

31

} action event: An action that has occurred on a GUI
component.
} The most common, general event type in Swing. Caused by:

} button or menu clicks,
} check box checking / unchecking,
} pressing Enter in a text field, ...

} Represented by a class named ActionEvent
} Handled by objects that implement interface ActionListener

Implementing a Listener (Observer)

32

public class MyClass implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 code to handle the event;
 }
}

JButton and other graphical components have this method:

/** Attaches the given listener to be notified of clicks and
events that occur on this component. */
public void addActionListener(ActionListener al)

e.g.
button.addActionListener(new MyClass());

Example: button

33

} Create a JButton and add it to a window
} public JButton(String text) Creates a new button with the

given string as its text.
} public String getText() Returns the text showing on the button.
} public void setText(String text) Sets button's text to be the

given string.

} Create an object that implements ActionListener
(containing an actionPerformed method)

} Add the listener object to the button's listeners

34

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;  
 
public class ButtonDemo1 {  
 // inner class to handle button events  
 private static class ButtonListener implements ActionListener {  
 private int nEvents = 0;  
  
 public void actionPerformed(ActionEvent e) {  
 nEvents++;  
 System.out.println(e.getActionCommand() + " " + nEvents);  
 }  
 }  
  
 public static void main(String[] args) {  
 JFrame frame = new JFrame("Button Demo");  
 frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);  
  
 // create a new button with label "Hit me" and string "OUCH!" to be  
 // returned as part of each action event  
 JButton button = new JButton("Hit me");  
 button.setActionCommand("OUCH!");  
 button.addActionListener(new ButtonListener());  
  
 // Add button to the window and make it visible  
 frame.add(button); frame.pack(); frame.setVisible(true);  
 }  
}

35

import java.awt.*; // basic awt classes  
import java.awt.event.*; // event classes  
import javax.swing.*; // swing classes  
 
public class ButtonDemo2 {  
  
 public static void main(String[] args) {  
 JFrame frame = new JFrame("Button Demo");  
 frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);  
  
 // create a new button with label "Hit me" and string "OUCH!" to be  
 // returned as part of each action event  
 JButton button = new JButton("Hit me");  
 button.setActionCommand("OUCH!");  
  
 // Create and register a new button listener to handle clicks  
 button.addActionListener(new ActionListener () {  
 int nEvents = 0; // number of events handled  
 public void actionPerformed(ActionEvent e) {  
 nEvents++;  
 System.out.println(e.getActionCommand() + " " + nEvents);  
 }  
 });  
  
 // Add button to the window and make it visible  
 frame.add(button);  
 frame.pack();  
 frame.setVisible(true);  
 }  
}

Program thread and UI thread

36

} The program and user interface run in concurrent threads.

} All UI actions happen in the UI thread – even when they execute callbacks
to code like actionListener, etc. defined in your program.
} Any updates to the user interface must happen on the event dispatch thread.

} Event handlers usually should not do a lot of work.

} If the event handler does a lot of computing, the user interface will appear
to freeze up.

Program thread and UI thread

37

} If there’s lots to do, the event handler should start a new thread or set a bit
that the program thread will notice.

} Do the heavy work back in the program thread.

} When the heavy work finishes, the UI is notified to update the view.

Suppose we have a button that launches a series of database queries. We
dutifully start up a new thread so that our queries won't block the user
interface:

JButton b = new JButton("Run query");  
b.addActionListener(new ActionListener() {  
 public void actionPerformed(ActionEvent e) {  
 Thread queryThread = new Thread() {  
 public void run() {  
 runQueries();  
 }  
 };  
 queryThread.start();  
 }  
});

Program thread and UI thread

38

} But now, from our query thread, we want
to update a progress bar or some other
component showing the current progress
to the user.

} How can we do this if we're no longer in
the event dispatch thread? Well, the
SwingUtilities class, which provides
various useful little calls, includes a
method called invokeLater().
} This method allows us to post a "job" to

Swing, which it will then run on the event
dispatch thread at its next convenience.

So here is how to use
SwingUtilities.invokeLater()
from our runQueries method:

// Called from non-UI thread  
private void runQueries() {  
 for (int i = 0; i < noQueries; i++) {  
 runDatabaseQuery(i);  
 updateProgress(i);  
 }  
}  
 
private void updateProgress(final int queryNo) {  
 SwingUtilities.invokeLater(new Runnable() {  
 public void run() {  
 // Here, we can safely update the GUI  
 //because we'll be called from the  
 // event dispatch thread  
 statusLabel.setText("Query: " + queryNo);  
 }  
 });  
}

Application startup code

39

} There's one place where it's very easy to forget that we need
SwingUtilities.invokeLater(), and that's on application startup.  

} Our applications main() method will always be called by the main program thread
that the VM starts up for us.  

} If we have code to update the GUI there, it may interfere with the UI thread.

} The code that initializes our GUI must also take place in an invokeLater().
public class MyApplication extends JFrame {  
 
 public static void main(String[] args) {  
 SwingUtilities.invokeLater(new Runnable() {  
 public void run() {  
 MyApplication app = new MyApplication();  
 app.setVisible(true);  
 }  
 });  
 }  
 
 private MyApplication() {  
 // create UI here: add buttons, actions etc  
 }  
}

Better implementation of ButtonDemo

40

public class ButtonDemo3 extends JFrame {  
  
 private ButtonDemo3(String title) { //  
 super(title);  
 this.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);  
 Component c = this;  
  
 JButton button = new JButton("Hit me");  
 button.setActionCommand("OUCH!");  
  
 button.addActionListener(new ActionListener () {  
 int nEvents = 0; // number of events handled  
 public void actionPerformed(ActionEvent e) {  
 nEvents++;  
 JOptionPane.showMessageDialog(c, e.getActionCommand() + " " + nEvents);  
 }  
 });  
 this.add(button); this.pack(); this.setVisible(true);  
 }  
  
 public static void main(String[] args) {  
 SwingUtilities.invokeLater(new Runnable() {  
 public void run() {  
 ButtonDemo3 app = new ButtonDemo3("Button Demo");  
 app.setVisible(true);  
 }  
 });  
 }  
}

