
The Object-Oriented Design Process
Horstmann Chapter 2

CS 3354

Spring 2017

Jill Seaman

1

2.1 From Problem to Code
Software Development Process (Wikipedia): A splitting of of software
development work into distinct phases (or stages) containing certain activities
with the intent of better planning and management.

Goal of programming: solve a problem, such as write a word processor.

Three phases of a simplified object-oriented software development process:

✦Analysis

✦Design

✦Implementation

These phases are often interleaved.

2

2.1.1 The Analysis Phase
✦Goal of the analysis phase: a precise description of tasks the software

product should do.

✦Result is a detailed textual description called a functional specification

✦Having these characteristics:

-Completely defines tasks to be solved by the program

- 	Free from internal contradictions

- 	Readable both by customers, users, and software developers

- 	Testable against reality

✦Could be described using use cases: 
a use case is a description of a sequence of actions that yields a benefit
for a user of a system.

3

2.1.2 The Design Phase
✦Goal of the design phase: Structure the programming tasks into a set of

interrelated classes.

- Identify classes (and attributes)

- Identify responsibilities of the classes

- Identify relationships among the classes

✦Results in the following artifacts:

- 	Textual description of classes and key responsibilities

- 	Diagrams of relationships among the classes

- 	Diagrams of important usage scenarios

- 	State diagrams for objects whose behavior is state-dependent

4

2.1.3 The Implementation Phase
✦Goal of the implementation phase: the programming, testing, and

deployment of the software product.

-Classes and methods are coded, tested, and deployed

-Using the design phase artifacts as a guide

✦These activities are often performed iteratively:

- 	Start with a small working version of the program (a prototype)

- 	Test and debug

- Implement more features and repeat

✦Testing must demonstrate that the program conforms to the analysis
phase documentation (functional specification and/or use cases).

5

Review of Object-Oriented Concepts

• Encapsulation: combining data and code into a single object. 

• Data hiding (or Information hiding) is the ability to hide the
details of data representation from the code outside of the object. 

• Interface: the mechanism that code outside the object uses to
interact with the object.

✦ The object’s (public) functions

✦ Specifically, outside code needs to “know” only the function

prototypes (not the function bodies).

6

2.2 Object and Class Concepts
• Programming language independent view of Objects.

• Objects have state and behavior:

✦State: the information stored by the object

- This changes over time, if the object is mutable.

- Values of the fields of a Java object

✦Behavior: the operations an object supports

-Methods a Java object can perform

✦Identity: two objects could have the same state and behavior but be
considered different from each other.

• Class is a collection of objects with the same behavior and
common set of possible states.

✦instance of a class is an object that belongs to the class.

7

2.3 Identifying Classes

• Look for nouns in the functional specification.

• Focus on concepts, not implementation

• The attributes of the nouns become the fields of the class that
represent the state of the objects in that class.

✦ Message might be a noun from the specification (for a voice mail system)

✦ Attributes of a message (also found in the specification) become the

fields:

- Timestamp

- Caller’s phone number (or extension)

- Text

8

Identifying Classes
• Other nouns typical of those that can be found in the functional

description of a voice mail system:

✦	 Mailbox

✦	 Message

✦	 User

✦	 Passcode

✦	 Extension

✦	 Menu

• Now consider the storage of messages in a mailbox. The mailbox
owner wants to listen to the messages in the order in which they
were added: FIFO (first in, first out). So we’ll add:

✦	 MessageQueue

9

Identifying Classes

• Once all the nouns in the functional specification are addressed,
consider necessary classes from these categories:

✦ Tangible things (like Mailbox, Message, Document, etc).

✦ Agents (they perform an operation, like Paginator or Scanner)

✦ Events and transactions (like MouseEvent)

✦ Users and roles (like Administrator or Reviewer)

✦ Systems (or subsystems) (like Mail System)

✦ System interfaces and devices (these model the OS, like File)

✦ Foundational classes (probably from the library, like String, Date,

Rectangle)

10

2.4 Identifying Responsibilities

• Operations the class “should” perform

• Look for verbs in the functional specifications

✦	 Add message to mailbox

✦	 Remove message from mailbox

✦	 Set the text of a message

• Every operation should be the responsibility of a single class

• Not always easy to decide which class is responsible:

✦ Example: Add message to a mailbox

✦ Who is responsible, the message or the mailbox?

11

2.5 Identifying Relationships

• Dependency relationships: (objects of one class use instances of
another)

✦ Example: Mailbox uses a Telephone object to play a Message for

a User.

• Aggregation relationships: (objects of one class contain instances

of another)

✦ Example: Mailbox contains a MessageQueue, MessageQueue

contains Messages

• Inheritance relationships: (objects of one class are special cases

of instances of another)

✦ Example: University Person has an ID number, Student is a U.P.

with a major and a GPA, Faculty is a U.P. with an office number.

12

Dependency Relationships

• Class A depends on Class B if it uses or refers to B in ANY way.

• If A can be developed without any knowledge of B, then it does

NOT depend on B.

• Coupling is a measure of how strongly one class is connected to,

has knowledge of, or relies on other classes.

• Goal: reduce coupling/dependency so changes to one class do not

affect the others. For example:

• Replace:  
void print() {System.out.println(text);}// prints to System.out 
with String getText() { return text; }//can be printed anywhere

• Removes dependence on System, PrintStream

13

Aggregation Relationships

• Class A aggregates Class B if it objects of class A contain objects
of class B over a period of time.

• It’s a special case of dependency, implemented using fields.

• Multiplicity: how many objects of B can be related to an object of

A?

✦ 1 to 1 exactly one A is related to an instance of B and vice versa.

✦ 1 to many one A is related to any number of B’s (a collection of

B’s), but each B has one A.

✦ many to many an A has any number of B’s, and vice versa.

14

Inheritance Relationships

• Class A inherits from Class B if it objects of class A are special
cases of objects of class B, capable of exhibiting the same
behavior but possibly with additional responsibilities and a richer
state.

✦ B is the superclass (it’s more general)

✦ A is the subclass (it’s more specific)

✦ subclass has added operations and attibutes

✦ subclass has all operations and attributes of superclass (but may

implement the operations differently).

• Inheritance is much less common than the dependency and

aggregation relationships.

15

2.6 Use Cases

• Use Cases are an analysis technique to describe the functionality
of the system from an external point of view.

• An Actor is an external entity that interacts with the system.

✦ different kinds of users (roles), other systems, etc.

• A Use case is a textual description of (some of) the behavior of the
system from an actor’s point of view.

✦ describes a single user/system interaction

✦ described as a sequence of events: 1. user does X 2. system does Y …

✦ focused on one goal of an actor (one kind of user)

✦ yields a visible/observable result of value to the actor

✦ should include variations that describe exceptional situations (failures)

16

Sample Use Case
Leave a Message

1. The user dials the main number of the voice mail system.

2. The voice mail system speaks the following prompt:

 Enter mailbox number followed by #.

3. The user types in the extension number of the message recipient.

4. The voice mail system speaks the following message:

 You have reached mailbox xxxx. Please leave a message now.

5. The user speaks the message.

6. The user hangs up.

7. The voice mail system places the recorded message in the  
 recipient’s mailbox.

17

Sample Use Case - Variations
Variation #1

1.1. In Step 3, the user enters an invalid extension number.

1.2. The voice mail system speaks:

 You have typed an invalid mailbox number.

1.3. Continue with Step 2.

Variation #2

2.1. After Step 4, the user hangs up instead of speaking a message.

2.2. The voice mail system discards the empty message.

18

2.7 CRC Cards

• The CRC card method is an effective design technique for
discovering classes, responsibilities, and relationships.

✦ CRC = Classes, Responsibilities, Collaborators

• A CRC card is an index card that describes one class and lists its
responsibilities and collaborators (dependent classes).

✦ one card per class

✦ class name on top

✦ responsibilities on left (should be high level, ideally 1-3 per card)

✦ collaborators on right (these are for the class, not for each responsibility). 

19

Sample CRC Card

20

• Class=Mailbox

• Responsibilities:

✦ manage passcode

✦ manage greeting

✦ manage new and saved messages

• Collaborators:

✦MessageQueue

CRC Card Process: Walkthrough

• Take a use case and assign each task to one of the classes.

✦ add new classes as necessary

✦ look for collaborating classes to delegate responsibility.

• Example: Leave a message:.

✦ User connects to voice mail system and dials extension number

✦ “Someone" (some class) must locate mailbox:

- Neither Mailbox nor Message can do this (not enough info)

- Need to create a new class: MailSystem

- Responsibility: manage mailboxes

21

New CRC Card

22

• Class=MailSystem

• Responsibilities:

✦ manage mailboxes

• Collaborators:

✦Mailbox

CRC Cards Process

• How to decide which class has which responsibilities? See
guidelines in section 2.7:

✦ Beware the “God” class: don’t give the “system” class too many

responsibilities.

✦Avoid “mission creep”. If a class acquires too many responsibilities, then

consider splitting it in two.

✦Watch out for unrelated responsibilities: storing messages and parsing

input are not related (separate classes).

✦Don’t add responsibilities just because they can be done: “sort messages”

• Note: CRC cards are good for discovering classes and operations,
but not for documenting them.

23

What is UML?

• Unified Modeling Language

• UML is a graphical notation to articulate (and communicate)

complex ideas in Object-Oriented software development

• UML resulted from a unification of many existing notations.

• The goal of UML is to provide a standard notation that can be used

by all object-oriented development methods.

• UML includes:

✦Use Case Diagrams

✦Class Diagrams

✦Sequence Diagrams

24

✦State Diagrams

✦Activity Diagrams

Tools for Drawing UML Diagrams

The textbook mentions these:

• Rational Rose (http://www.ibm.com/software/rational/) ($$$)

• Together (Formerly of Borland) ($$$)

• ArgoUML (http://argouml.tigris.org/) and its commercial cousin

Poseidon UML Community Edition (http://www.gentleware.com/)

• Dia (http://www.gnome.org/projects/dia)

• For simple UML diagrams, you can use the Violet tool that you can

download from http://horstmann.com/violet.

25

UMLet

• Umlet (http://umlet.com) Free UML Tool for Fast UML Diagrams.  
I recommend this one!! Download, then double click on umlet.jar. Or
try the web app: http:umletino.com (UMLetino)

• Each diagram has a graphical AND a textual representation,  
and both are displayed in the tool.

• The tool allows you to create and modify your diagrams using the
graphical tool (drag and drop, resize, etc) as well as the editor tool
(modify the textual representation).

• The diagram is stored in a whatever.uxf file, which actually stores the
textual representation in XML format.

• See UmletSamples.zip on the class website (or TRACS) for uxf files of
some samples used in the slides.

• Documentation: http://www.umlet.com/faq.htm
26

2.8 Class Diagrams

• Used to describe the internal structure of the system.

• They are static: they display the (unchanging) relationships among

the classes that exist throughout the lifetime of the system.

• They describe the system in terms of

✦Classes, an abstract representation of a set of objects

✦Attributes, properties of the objects in a class

✦Operations that can be performed on objects in a class (responsibilities)

✦Relationships that can occur between objects in various classes

27

Class Diagrams: details

• Classes are boxes composed of three compartments:

✦Top compartment: name

✦Center compartment: attributes

✦Bottom compartment: operations/methods

• Include only key attributes and methods (not getters/setters, etc.)

• Attribute and Operations: are often omitted for simplicity

• Data types for attributes and operation parameters and results are

also optional (note type goes after the attribute/parameter/function)

28

text : String
getMessage(index : int) : Message

Sample Class Boxes

• Message and Mailbox are Class names

• newMessages and savedMessages are Attributes

• add() and getCurrentMessages() are Operations (or Methods)

• Note the one on the left does not include attributes or operations.

29

UML Connectors for Relationships

30

These are the types of relationships
that are commonly denoted in UML
class diagrams:

• Dependency (dashed line)

• Aggregation (line with open diamond)

• Inheritance (line with open triangle)

• Composition (line with closed diamond)

• Association (line)

• Directed Association (line with arrow)

• Interface Type Implementation  

(dashed line with open triangle)

Special Cases of Dependency

31

• Directed relationships: Arrow from A to B indicates the direction of
navigation. No arrow indicates a bidirectional relationship.

These describe directed relationships, represented using an arrow from A to B:

• Dependency: objects of class A use objects of class B in ANY way.

• Association: special kind of dependency where objects of class A contain a

class-level reference to objects of class B

• Aggregation: nearly equivalent to an Association: represents “has-a”

relationship. Open diamond is on the owner. Usually bidirectional (no
arrows, B knows about its owner).

• Composition: special kind of Aggregation/Association where A owns the
instances of B (it creates them and destroys them).

Multiplicity

• Multiplicity: a range of integers labeling one end of an association.

• It indicates how many objects of that class can be related to one

object of the other.

- any number (0 or more): 0..n, 0..* or *

- one or more: 1..n or 1..*

- zero or one: 0..1

- exactly one: 1

• Most associations belong to one of these three types:

✦A one-to-one, one-to-many, or many-to-many (see slide 14)

• Multiplicity applies to these connectors only:

✦Association, Aggregation, Composition.

32

Sample Diagram:

• ClassDiagram.uxf from UmletSamples.zip (my version of the voice mail
system, classes and relationships only).

33

Dependency Example

• Class A depends on Class B if it uses or refers to B in ANY way.

• This drawing indicates:

- Connection uses Message in some way (other than aggregation,
inheritance, etc.)

✦ Connection objects create and/or obtain Message objects, and pass

them as arguments to methods on other objects.

- Message does not use Connection in any way. 

34

Aggregation with Multiplicity Example

• This drawing indicates:

- MessageQueue aggregates (contains) Messages, because the open

diamond next to MessageQueue indicates the container class.

- Each Message Queue object contains any number (0 or more) Message

objects, because of the 0..n next to Message.

- Each Message object is contained by at exactly 1 Message Queue object  

because of the 1 next to MessageQueue.

35

0..n

Association Example

• Some designers do not like aggregation and prefer to use a more
general association relationship

✦No diamonds

✦Can (optionally) specify roles at the ends of the association,

✦Roles clarify the purpose of the association.

• For example: the student to course relationship.

✦You may use either associations or aggregations in your diagram, as long
as you indicate the multiplicity.

36

Composition Example

• Composition is a special case of aggregation where the composite
(container) object has sole responsibility for the life cycle of the
component parts.

✦The component object cannot exist outside the container.

✦An object may be part of only one composite.

✦Specified with a closed diamond on the composite (whole) side.

✦Not used by all designers.

✦Could be used to represent the Mailbox to MessageQueue association.

37

Directed Association Example

• Associations can be Bidirectional or Unidirectional.

✦Unidirectional association is indicated by using a line with an arrow

✦The arrow indicated in which direction navigation is supported.

✦The diagram below is a version of the MessageQueue to Message

relationship indicating we can get from Message Queue to the Message,
but Message does not know about its containing Message Queue.

38

Inheritance Example

• Objects of class A are special cases of objects of class B

• Class A objects inherit attributes and operations from class B.

• In UML:

✦Solid line with open arrow pointing to the Superclass

• A Truck is a special case of a Vehicle:

39

Interface Types Example

• Objects of class A implement the methods of class B (the interface)

• An Interface type describes a set of methods, but has no attributes.

• A class implements an interface type if it implements its methods

• In UML, use stereotype «interface» for the type

✦Dashed line with open arrow pointing to the Interface type

• A Message implements the methods of Comparable:

40

Sample Class Diagram with Inheritance

• Note that FieldOfficer and Dispatcher inherit from PoliceOfficer

✦ the subclasses may have attributes and operations of its own, as well as

the attributes and operations of the base class (it inherits them).

41

italics indicates Abstract class

Class Diagram with an Interface

42

Which of the following are true according to this diagram?

a) Persons have a name

b) Guitarists have a name

c) Guitars have a name

d) MusicPlayers have a name

Class Diagrams: Good Practices

• Do not use an attribute in a class to represent a relationship already
in the diagram

✦Among other problems, this is redundant

• Comprehensive class diagrams with all classes, attributes, and
associations are too difficult to read.

✦	 Use UML to inform, not to impress

✦	 Don't draw a single monster diagram

✦	 Each diagram must have a specific purpose

✦	 Omit inessential details

43

2.9 Sequence Diagrams

• Represent the dynamic behavior of the system

• A sequence diagram shows the time ordering of a sequence of

method calls, including nested method calls.

• They describe patterns of communication among a set of

interacting objects.

✦ Objects communicate by calling methods on other objects.

• A sequence diagram could be used to represents the steps of a
use case.

44

Objects

• Sequence diagrams describe interactions between Objects  
(NOT Classes).

• Objects are represented with a box containing the object’s name
and the Class the object is an instance of.

✦ It is underlined to indicates this is an object, not a class.

• The text inside the box has one of these formats:

✦ objectName : ClassName

✦ objectName (class not specified)

✦ : ClassName (object not specified)

• Objects must be in a row (in any order) at the top of the diagram.

45

Lifelines and Activation Boxes

• The dotted line below the object is the object’s lifeline

✦ Vertical rectangle along the lifeline: an activation bar representing a

method that is currently being executed.

✦ The activation bar ends when the method returns.

✦ The activation bar of a called method must be smaller than that of the

calling method.

46

Method Calls

• Method calls are represented with a solid horizontal arrow from one
object’s lifeline to another.

✦ The arrow is labelled with the method name (arguments are optional).

✦ It must end at the top of an activation bar on the lifeline of the object on

which the method is called.

✦ The direction of the arrows (left to right or right to left) and the position of

the arrows on the page indicate the sequence of method calls during the
operation of the program.

- An arrow closer to the top of the page occurs before one that is lower on

the page.

47

Sequence Diagram with One Method Call

48

• What does the sequence diagram below illustrate?

✦aMailbox is an object, probably of type Mailbox, and an unspecified

method has been called on it.

✦During the execution of that method, an add method has been called on

the newMessages object (of type MessageQueue).

private MessageQueue newMessages;
public void addMessage(Message aMessage)
{
 newMessages.add(aMessage);
}

Here is the corresponding code
excerpted from the Mailbox Class:

Self-call

• a Self-call is when an object calls one of its own methods

✦ use a method call arrow back to original activation bar

✦embed a new activation bar in the currently executing one:

49

private Mailbox locateMailbox(String ext){
…
}
public void anotherMethod() {
 String test = “123”
 Mailbox mb = locateMailbox(test);
 //do something with mb here
}

Hypothetical code from MailSystem

Create a New Object Instance

• Creating new instances:

✦“new Class()” message points directly to (lowered) object’s box:

50

new Mailbox

public void someMethod(int i) {
 String passcode = "" + (i + 1);
 String greeting = "You have reached mailbox " + (i + 1)
 + ". \nPlease leave a message now.”;
 Mailbox mb = new Mailbox(passcode, greeting)
 //do something with mb
}

Hypothetical code from MailSystem

Sample Diagram:
• SequenceDiagram.uxf  

from UmletSamples.zip

51

Sample Diagram (some of the code):

52

public void run(Connection c) {
 boolean more = true;
 while (more) {
 String input = scanner.nextLine();
 if (input == null) return;
 if (input.equalsIgnoreCase("H"))
 c.hangup();
 else if (input.equalsIgnoreCase("Q"))
 more = false;
 else if (input.length() == 1
 && "1234567890#".indexOf(input) >= 0)
 c.dial(input);
 else
 c.record(input);
 }
}

Code from Telephone:

private Mailbox currentMailbox;
public void hangup() {
 if (state == RECORDING)
 currentMailbox.addMessage(new Message(currentRecording));
 resetConnection();
}

Code from Connection:

Strategy: Creating Sequence Diagrams From Code

• Make a table of method calls in the order they occur.

• For each method call, list the caller and the callee (the first one

doesn’t have a caller):

• Now make boxes and lifelines for each of the classes.

• Add a labeled arrow for each row in the table, from the caller

class's lifeline to the callee class's lifeline (label with method name).

• Then add activation records to capture the duration of each

method.
53

Method caller class callee class
------ ------------ ------------
scrub (none) A
foam A B
…

See file Sequence.java
on TRACS

Sequence Diagrams: Good Practices

• Do not indicate branches or loops in Sequence Diagrams.

✦The UML defines a notation for that purpose, but it is a bit cumbersome

and rarely used.

• The sequence diagram should be consistent with a given class
diagram (or code) that specifies the classes and their operations

✦ messages to an object’s lifeline must correspond to valid operations for

that object’s class

• Activation boxes should not overlap horizontally unless one box’s
message has called the other.

• Don’t have a sequence diagram for each use case, only for the
scenarios that involve several interacting classes.

54

When and How to Use Sequence Diagrams

• During either design (forwards engineering) or implementation
(reverse engineering)

• When you want to look at the behavior of several objects within a
single use case.

• When the order of the method calls in the code seems confusing.

• When you are trying to determine which class should contain a

given method.

✦to uncover the responsibilities of the classes in the class diagrams

✦to discover even more new classes

• During Object-Oriented Design, sequence diagrams and the class
diagram are often developed in tandem.

55

2.10 State Diagrams

• Describe dynamic behavior of an individual object (or subsystem)
that can be in various states at different points in time.

✦Not all objects have different states. Most do not.

• A state diagram describes the sequence of states an object goes
through in response to external events

✦A graph: states are nodes, transitions are directed edges

• Transitions from one state to another occur as a result of external
events

56

States and Transitions

• A state is (often) represented as a value of an attribute of an object
that is changed by an external event.

✦A voice mail system can exist in three states: Connected, Recording, or

Mailbox Menu

• A state is a node in the graph

• The state usually has noticeable impact on the behavior of the

object

• A transition represents a change of state triggered by events,

conditions, or time.

✦Transitions are directed edges in the graph

✦Edges are usually labelled by the event causing the transition

57

State diagram for Connection class (Incomplete)

58

• When the caller dials the voice mail
system, it enters the connected
state.

• After it dials a valid extension, the
system enters the recording state,
where it records whatever the caller
speaks

• When the caller enters a passcode,
the system is in the mailbox menu
state.

State affects the behavior of the object

59

• In the “mailbox menu” state, spoken words are ignored.

• Voice input is recorded only when the system is in the

“recording” state.

• The telephone touchpad has no concept of the states. A key

press might be part of the mailbox number, passcode, or menu
command.

When and how to use State Diagrams

• When designing a class that has an attribute that responds to
external events (and determining which state the object is in is not
trivial)

✦Use the state diagram to document the transitioning behavior

• During testing

✦If you have a state diagram, you can develop tests that perform a

sequence of events and then verify that the object is in the correct state
with respect to the diagram

• If your object (or system) does not have an attribute that responds
to external events, do not use state diagrams.

• User Interface objects often have behavior that is useful to depict
with a state diagram

60

