
Design Patterns (and some GUI Programming)
Horstmann Chapter 5 (sections 1-7)

Unit 5

CS 3354

Spring 2017

Jill Seaman

1

Design Patterns

• In object-oriented development, Design Patterns are solutions
that developers have refined over time to solve a range of recurring
design problems.

• A design pattern has four elements

✦A name that uniquely identifies the pattern from other patterns.

✦A problem description that describes the situation in which the pattern

can be used.

✦A solution stated as a set of collaborating classes and interfaces.

✦A set of consequences that describes the trade-offs and alternatives to

be considered with respect to the design goals being addressed.

2

Design Patterns

• The following terms are often used to denote the classes that
collaborate in a design pattern:

✦The client class accesses the pattern classes.

✦The pattern interface is the part of the pattern that is visible to the client

class (might be an interface or abstract class).

✦The implementor class provides low level behavior of the pattern. Often

the pattern contains many of these.

✦The extender class specializes an implementor class to provide different

implementation of the pattern. These usually represent future classes
anticipated by the developer.

• Common tradeoff: Simple architecture vs extensibility

3

Delegation

• Delegation: A special form of aggregation, commonly used in
design patterns.

✦One class (A) contains a reference to another (B) (via member variable)

✦A implements its operations/methods by calling methods on B.  

(Methods may have different names)

✦Makes explicit the dependencies between A and B.

• Advantages of delegation:

✦B might be a pre-existing class, so we can reuse it without changing it.

✦B is hidden from clients of A, B can easily be changed or even replaced

with another class.

4

Encapsulating Traversals with
The ITERATOR Pattern
• Recall using an Iterator to iterate through the elements of a linked

list in Java:

• The hasNext method tests whether the iterator is at the end of the
list.

• The next method returns the current element and advances the
iterator to the next position.

• Why does the Java library use an iterator to traverse a linked list?

5

LinkedList<String> countries = new LinkedList<String>();
countries.add("Belgium");  
countries.add("Italy");  
countries.add("Thailand");
Iterator<String> iterator = countries.iterator();  
while (iterator.hasNext()) {  
 String country = iterator.next();  
 System.out.println(country);
}

Compare to C++ linked list traversal
• Recall performing a traversal of a linked list in C++:

• This exposes the internal structure of the list.

• And it’s error-prone: “it is very easy to mess up links and corrupt

the link structure of a linked list”

6

 ListNode *p = head;
 while (p!=NULL) {
 cout << p->value << “ “;
 p = p->next;
 }
 cout << endl;

What interface (methods) to use instead?
• For a (java) Queue:

• For an Array List:

• For a Linked List, we want to be able to add and remove elements
from the middle of the list, but it would be very inefficient to specify
a position in a linked list with an integer index.

7

void add(E x) //enqueue
E remove() //dequeue
E peek() //returns next elem (doesn’t remove)
int size() //number of elems in the queue

E get(int i)
void set(int i, E x)
void add(E x)
int size()

A Cursor-based Linked List
• A common linked-list implementation is a list with a cursor

• A list cursor marks a position similar to the cursor in a word

processor.

• Requires adding a field to point to the current element.

• Here is how to traverse the list:

8

E getCurrent() // Get element at cursor
void set(E x) // Set element at cursor to x
E remove() // Remove element at cursor
void insert(E x) // Insert x before cursor
void reset() // Reset cursor to head
void next() // Advance cursor
boolean hasNext() // Check if cursor can be advanced

list.reset();
while (list.hasNext()) {
 //do something with list.getCurrent();
 list.next();
}

Note: next() does not
return anything

Problem with the Cursor-based Linked List
• There is only one cursor, you can’t implement algorithms that

compare different list elements.

• You can’t even print the contents of the list for debugging

purposes, because it moves the cursor to the end.

• In Java, a List<T> can have any number of iterators attached to it.

• The iterator concept is also useful outside of the collection classes

(see the Scanner).

• It is a good solution to a common problem.

9

The Iterator as a Design Pattern

10

Name: Iterator Design Pattern 
Problem Description: Provide a way to access the elements of an aggregate
object sequentially without exposing its underlying representation, for multiple
clients simultaneously. 
Solution: ConcreteIterator class implements the Iterator interface for
accessing and traversing elements. The ConcreteAggregate implements the
Aggregate interface for creating an Iterator object.

Note: there is no reset(),
use createIterator() to
get a new one.

createIterator() returns
an iterator with cursor
on the first element.

• I substituted the Java types from the Linked List example into the
class diagram to show how it fits the pattern.

Example: Linked List Iterators

11

LinkedList<String> countries = new LinkedList<String>();
countries.add("Belgium");  
countries.add("Italy");  
countries.add("Thailand");
Iterator<String> iterator = countries.iterator();  
while (iterator.hasNext()) {  
 String country = iterator.next();  
 System.out.println(country);
}

next() is equivalent to:
x=getCurrent();
advance cursor;
return x;

Name: Adapter Design Pattern 
Problem Description: Convert the interface of a legacy class into a different
interface expected by the client, so they can work together without changes.  
Solution: Adapter class implements the Target interface expected by the
client. The Adapter delegates requests from the client to the Adaptee (the pre-
existing legacy class) and performs any necessary conversion.

Encapsulating Legacy Components with the
ADAPTER Pattern

12

• First, how to display a window and add UI Components to it:

• A frame window is a top-level window, usually decorated with

borders and a title bar, displayed as follows:

• pack: sets the size of the frame to the smallest size needed to
display its components.

• EXIT_ON_CLOSE: program exits when user closes the window.

• Let’s build this:

Example: Adding an Icon to a UI Container

13

JFrame frame = new JFrame();  
frame.pack();  
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);  
frame.setVisible(true);

• First, construct some buttons:

• Make a text field:

• Set a layout manager (how to position components):

• Finally, add the components to the frame and display.

Example: Adding an Icon to a UI Container

14

final int FIELD_WIDTH = 20;
JTextField textField = new JTextField(FIELD_WIDTH);
textField.setText("Click a button!”);

JButton helloButton = new JButton("Say Hello");
JButton goodbyeButton = new JButton("Say Goodbye");

frame.setLayout(new FlowLayout());

frame.add(helloButton);
frame.add(goodbyeButton);
frame.add(textField);

frame.pack();  
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);  
frame.setVisible(true);

• NOW, let’s say I want to add a MarsIcon to my JFrame.

• Problem: the JFrame.add() method takes a Component, not an

Icon.

• I could just make my MarsIcon implement the Component interface,

but that’s a lot of work.

• There is a JComponent class that I could make MarsIcon inherit

from, but let’s assume MarsIcon already has another superclass.

• Solution: Make a new class (IconAdapter) that is a subclass of

JComponent. It will hold a reference to an Icon. It translates
JComponent methods to Icon methods.

Example: Adding an Icon to a UI Container

15

Example: IconAdapter

16

import java.awt.*;
import javax.swing.*;
/**
 An adapter that turns an icon into a JComponent.
 */
public class IconAdapter extends JComponent
{
 public IconAdapter(Icon icon) {
 this.icon = icon;
 }
 public void paintComponent(Graphics g) {
 icon.paintIcon(this, g, 0, 0);
 }
 public Dimension getPreferredSize() {
 return new Dimension(icon.getIconWidth(),
 icon.getIconHeight());
 }
 private Icon icon;
}

Example: IconAdapterTester

17

import java.awt.*;
import javax.swing.*;
/**
 This program demonstrates how an icon is adapted to
 a component. The component is added to a frame.
 */
public class IconAdapterTester
{
 public static void main(String[] args)
 {
 Icon icon = new MarsIcon(300);
 JComponent component = new IconAdapter(icon);
 JFrame frame = new JFrame();
 frame.add(component, BorderLayout.CENTER);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);
 }
}

• The IconAdapter as an instance of the ADAPTER Pattern.

• Note we use inheritance instead of implementing an interface.

Adapter Pattern: IconAdapter

18

• Client and Adaptee work together without any modification to
either.

• Adapter works with Adaptee and all of its sub classes

• A new Adapter needs to be written for each specialization

(extension) of the Target interface.

• Question: Where does the Adapter Pattern use inheritance?  
Where does it use delegation?

Adapter Pattern: consequences

19

Name: Strategy Design Pattern 
Problem Description: Define a family of algorithms, encapsulate each one, and
make them interchangeable. The algorithm is decoupled from the client. 
Solution: A Client accesses services provided by a Context. The Context is
configured to use one of the ConcreteStrategy objects (and maintains a reference
to it) . The AbstractStrategy class describes the interface that is common to all
the ConcreteStrategies.

Encapsulating Context with the
STRATEGY Pattern

20

Client

Policy

• Based on location (available network connections), switch between
different types of network connections

✦LocationManager configures NetworkConnection with a concrete

NetworkInterface based on the current location

✦Application uses the NetworkConnection independently of concrete

NetworkInterfaces (NetworkConnection uses delegation).

Example: switching between network protocols

21

NetworkInterface

open()
close()
send()
receive()

NetworkConnection

send()
receive()
setNetworkInterface() LocationManager

Application

Ethernet

open()
close()
send()
receive()

WaveLAN

open()
close()
send()
receive()

UMTS

open()
close()
send()
receive()

WaveLAN = WiFi
UMTS = 3G mobile

phone network

Strategy Pattern example: Network protocols

22

// Context Object: Network Connection
public class NetworkConnection {
 private String destination;
 private NetworkInterface intf;
 private StringBuffer queue;

 public NetworkConnect(String destination, NetworkInterface intf) {
 this.destination = destination; this.intf = intf;
 this.intf.open(destination);
 }
 public void send(byte msg[]) {
 queue.concat(msg);
 if (intf.isReady()) {
 intf.send(queue);
 queue.setLength(0);
 }
 }
 public byte[] receive () {
 return intf.receive();
 }
 public void setNetworkInterface(NetworkInterface newIntf) {
 intf.close()
 newIntf.open(destination);
 intf = newIntf;
} }

Strategy Pattern example: Network protocols

23

//Abstract Strategy,
//Implemented by EthernetNetwork, WaveLanNetwork, and UMTSNetwork (not shown)
interface NetworkInterface {
 void open(String destination);
 void close();
 byte[] receive();
 void send(StringBuffer queue);
 bool isReady();
}
//LocationManager: decides on which strategy to use
public class LocationManager {
 private NetworkConnection networkConn;

 // called by event handler when location has changed
 public void doLocation() {
 NetworkInterface networkIntf;
 if (isEthernetAvailable())
 networkIntf = new EthernetNetwork();
 else if (isWaveLANAvailable())
 networkIntf = new WaveLanNetwork();
 else if (isUMTSAvailable())
 networkIntf = new UMTSNetwork();
 networkConn.setNetworkInterface(networkIntf);
 }
}

• Graphical user interfaces are made up of components (ie JButton)

• Components are placed in containers (like JFrame)

• Containers need to arrange the components on the screen

• Some interface toolkits use hard-coded pixel x-y coordinates

• Java Swing uses a Layout manager to control arrangement and

resize components automatically

• Advantages:

✦ Can easily switch "look and feel” (MS windows vs Mac)

✦ Can internationalize strings (resize components for different

lengths)

Strategy Pattern example: Layout Managers

24

Predefined Layout Managers:

25

Strategy Pattern example: Layout Managers

26

JFrame frame = new JFrame(); 
frame.setLayout(new FlowLayout()); 
frame.pack(); 
frame.setVisible(true);

• ConcreteStrategies can be substituted transparently from Context.

• Client (or Policy) decides which Strategy is best, given current

circumstances

• New algorithms can be added without modifying Context or Client

Strategy Pattern: consequences

27

Name: Observer Design Pattern 
Problem Description: Maintain consistency across the states of one Subject and
many Observers. 

Decoupling Entities from Views with the
OBSERVER Pattern

28

Solution: The Subject maintains
some state. One or more
Observers use the state
maintained by the Subject.
Observers invoke the attach()
method to register with a Subject.
Each ConcreteObserver defines
an update() method to
synchronize its state with the
Subject. Whenever the state of
the Subject changes, it invokes its
notify method, which iteratively
invokes each Observer.update()
method.

• We could implement the Observer pattern “from scratch” in Java.
But Java provides the Observable/Observer classes as built-in
support for the Observer pattern.

• The java.util.Observer interface is the Observer interface. It must be
implemented by any observer class. It has one method.

- void update (Observable o, Object arg) 

This method is called whenever the observed object is changed.  
Observable o is the observed object. 
Object arg can be some value sent by the observed object.

Observer Pattern: Java support

29

• The java.util.Observable class is the base Subject class. Any class
that wants to be observed extends this class.

- public synchronized void addObserver(Observer o) 

Adds an observer to the set of observers of this object

- boolean hasChanged() (see below)

- protected void setChanged() 

Indicates this object has changed (hasChanged now returns true)

- public void notifyObservers(Object arg)

- public void notifyObservers() 

IF hasChanged(), THEN notify all of its observers. Each observer
has its update() method called with this Observable object (and an
argument). The argument can be used to indicate which attribute
of this object has changed. (hasChanged now returns false).

Observer Pattern: Java support

30

Observer Pattern example:

31

import java.util.Observable;

/* A subject to observe! */
public class ConcreteSubject extends Observable {
 private String name;
 private float price;
 public ConcreteSubject(String name, float price) {
 this.name = name;
 this.price = price;
 System.out.println("ConcreteSubject created: " + name + " at " + price);
 }
 public String getName() {return name;}
 public float getPrice() {return price;}
 public void setName(String name) {
 this.name = name;
 setChanged();
 notifyObservers();
 }
 public void setPrice(float price) {
 this.price = price;
 setChanged();
 notifyObservers();
 }
}

Observer Pattern example:

32

import java.util.Observable;
import java.util.Observer;

//An observer of name changes.
public class NameObserver implements Observer {

private String name;

public NameObserver(ConcreteSubject cs) {
 cs.addObserver(this);

name = cs.getName();
System.out.println("NameObserver created: Name is " + name);

}

public void update(Observable obj, Object arg) {
 ConcreteSubject cs = (ConcreteSubject)obj;

 if (!name.equals(cs.getName())) {
name = cs.getName();
System.out.println("NameObserver: Name changed to " + name);

}
}

}

Observer Pattern example:

33

import java.util.Observable;
import java.util.Observer;

//An observer of price changes.
public class PriceObserver implements Observer {

private float price;

public PriceObserver(ConcreteSubject cs) {
 cs.addObserver(this);

price = cs.getPrice();
System.out.println("PriceObserver created: Price is " + price);

}

public void update(Observable obj, Object arg) {
 ConcreteSubject cs = (ConcreteSubject)obj;
 if (cs.getPrice()!= price) {
 price = cs.getPrice();
 System.out.println("PriceObserver: Price changed to " + price);
 }

}
}

Observer Pattern example:

34

//Test program for ConcreteSubject, NameObserver and PriceObserver
public class TestObservers {

public static void main(String args[]) {
// Create the Subject.
ConcreteSubject s = new ConcreteSubject("Corn Pops", 1.29f);

 // Create the Observers, who attach themselves to the subject
NameObserver nameObs = new NameObserver(s);
PriceObserver priceObs = new PriceObserver(s);
// Make changes to the Subject.
s.setName("Frosted Flakes");
s.setPrice(4.57f);
s.setPrice(9.22f);
s.setName("Sugar Crispies");

}
} ConcreteSubject created: Corn Pops at 1.29

NameObserver created: Name is Corn Pops
PriceObserver created: Price is 1.29
NameObserver: Name changed to Frosted Flakes
PriceObserver: Price changed to 4.57
PriceObserver: Price changed to 9.22
NameObserver: Name changed to Sugar Crispies

• Recall the JFrame window we made earlier:

• These buttons do nothing if you click on them.

• We need to add listener objects to the button.

• Listener objects implement the following Interface:

• The ActionEvent parameter contains information about the event,
such as the event source. But we usually don’t need that info.

Example: Making Buttons Work with UI Actions.

35

public interface ActionListener {  
 int actionPerformed(ActionEvent event);  
}

• ActionListeners attach themselves to a button, and when the button
is clicked the code of the actionPerformed method is executed.

• To define the action of the helloButton, we use an anonymous class
to implement the ActionListener interface type:

• When the button is clicked, the textField will be set.

• Note: the anonymous class can access fields from enclosing class

(like textField) IF they are marked Final.

Example: Making Buttons Work with UI Actions.

36

final JTextField textField = new JTextField(FIELD_WIDTH);
JButton helloButton = new JButton("Say Hello”);

helloButton.addActionListener(new
 ActionListener() {
 public void actionPerformed(ActionEvent event) {
 textField.setText("Hello, World!");
 }
});

Example: Making Buttons Work with UI Actions.

37

public class ActionTester {
 public static void main(String[] args) {
 JFrame frame = new JFrame();
 final JTextField textField = new JTextField(20);
 textField.setText("Click a button!");
 JButton helloButton = new JButton("Say Hello");
 helloButton.addActionListener(new
 ActionListener() {
 public void actionPerformed(ActionEvent event) {
 textField.setText("Hello, World!");
 }
 });
 JButton goodbyeButton = new JButton("Say Goodbye");
 goodbyeButton.addActionListener(new
 ActionListener() {
 public void actionPerformed(ActionEvent event) {
 textField.setText("Goodbye, World!");
 }
 });
 frame.setLayout(new FlowLayout());
 frame.add(helloButton); frame.add(goodbyeButton); frame.add(textField);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);
 }
}

• How is this an example of the OBSERVER pattern?

Example: Making Buttons Work with UI Actions.

38

• Note:

✦Does not use the Java Observer/Observable classes.

✦The JButton has no state that the observer cares about.

• Decouples a Subject from the Observers. Subject knows only that
it contains a list of Observers, each with an update() method.  
(The subject and observers can belong to different layers.)

• Observers can change or be added without changing Subject.

• Observers can ignore notifications (decision is not made by

Subject).

• Can result in many spurious broadcasts (and calls to getState())

when the state of a Subject changes.

Observer Pattern: consequences

39

Name: Composite Design Pattern 
Problem Description: Represent a hierarchy of variable width and depth so that
leaves and composites can be treated uniformly through a common interface.  
Solution: The Component interface specifies the services that are shared among
Leaf and Composite (operation()). A Composite has an aggregation association
with Components and implements each service by iterating over each contained
Component. The Leaf services do most of the actual work.

Encapsulating Hierarchies with the  
COMPOSITE Pattern

40

• Anatomy of a preference dialog. Aggregates, called Panels, are
used for grouping user interface objects that need to be resized and
moved together.

Example: A hierarchy of user interface objects

41

Top panel

Main panel

Button panel

• An object diagram (it contains instances, not classes) of the
previous example:

Example: A hierarchy of user interface objects

42

top:Panel

prefs:Window

ok:Button

main:Panel buttons:Panel

title:Label

c2:Checkbox

c3:Checkbox

c4:Checkbox

cancel:Button

c1:Checkbox

• A class diagram, for user interface widgets

Example: A hierarchy of user interface objects

43

Component
*

Checkbox Button Composite Label

Panel Window

Applet

move()
resize()

move()
resize()

Composite Pattern example: File system

44

//Component Node, common interface
interface AbstractFile {

public void ls();
}

// File implements the common interface, a Leaf
class File implements AbstractFile {

private String m_name;
public File(String name) {

m_name = name;
}
public void ls() {

System.out.println(CompositeDemo.g_indent + m_name);
}

}

Composite Pattern example: File system

45

// Directory implements the common interface, a composite
class Directory implements AbstractFile {

private String m_name;
private ArrayList<AbstractFile> m_files = new ArrayList<AbstractFile>();
public Directory(String name) {

m_name = name;
}
public void add(AbstractFile obj) {

m_files.add(obj);
}
public void ls() {

System.out.println(CompositeDemo.g_indent + m_name);
CompositeDemo.g_indent.append(“ “); // add 3 spaces
for (int i = 0; i < m_files.size(); ++i) {

AbstractFile obj = m_files.get(i);
obj.ls();

}
 //remove the 3 spaces:

CompositeDemo.g_indent.setLength(CompositeDemo.g_indent.length() - 3);
}

}

Composite Pattern example: File system

46

public class CompositeDemo {
public static StringBuffer g_indent = new StringBuffer();

public static void main(String[] args) {
Directory one = new Directory("dir111"),

 two = new Directory("dir222"),
 thr = new Directory("dir333");

File a = new File("a"), b = new File("b"),
 c = new File("c"), d = new File("d"), e = new File("e");

one.add(a);
one.add(two);
one.add(b);
two.add(c);
two.add(d);
two.add(thr);
thr.add(e);
one.ls();

}
}

dir111
 a
 dir222
 c
 d
 dir333
 e
 b

Output:

• Client uses the same code for dealing with Leaves or Composites

• Leaf-specific behavior can be modified without changing the

hierarchy

• New classes of leaves (and composites) can be added without

changing the hierarchy

• Could make your design too general. Sometimes you want
composites to have only certain components. May have to add
your own run-time checks.

Composite Pattern: consequences

47

Adding Behavior Dynamically with the  
DECORATOR Pattern

48

Name: Decorator Design Pattern 
Problem Description: Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for extending functionality.  
Solution: The Component interface specifies the services for objects that can
have responsibilities added to them. A ConcreteComponent is an independent
object to which additional responsibilities can be attached. The Decorator
conforms to the Component interface, and maintains a reference to a Component
to which it adds responsibilities.

• When a component contains more information than can be shown
on the screen, it becomes necessary to add scroll bars.

• This code adds scroll bars to a text area (a text area is a box where
you can enter multiple lines of text):

Example: Adding scrollbars to a UI Component

49

JTextArea area = new JTextArea(20, 40); // 20 rows, 40 columns
JScrollPane scroller = new JScrollPane(area);
frame.add(scroller, BorderLayout.CENTER);

JScrollPane(Component view)
Creates a JScrollPane that displays the contents of the specified component, where both
horizontal and vertical scrollbars appear whenever the component's contents are larger
than the view.

• The JScrollPane is an instance of the DECORATOR Pattern.

• This is not a hierarchy, the JScrollPane contains only 1 Component.

• The JScrollPane is itself a Component.

✦It has the same methods as JTextArea, implemented by calling the method
on JTextArea and modifying the result.

✦It can be decorated by another JScrollPane

Decorator Pattern: Scroll Bars

50

• Component objects can be decorated (visually or behaviorally
enhanced)

• The decorated object can be used in the same way as the
undecorated object

• The component class does not want to take on the responsibility of
the decoration (loose coupling!)

• There may be an open-ended set of different kinds of decorations.

• A decorated object can itself be decorated. And so on. And so on.

Decorator Pattern: consequences

51

Name: Facade Design Pattern 
Problem Description: Reduce coupling between a set of related classes and the
rest of the system. Provide a simple interface to a complex subsystem. 

Encapsulating Subsystems with the
FACADE Pattern

52

Solution: A single
Facade class
implements a high-level
interface for a
subsystem by invoking
the methods of lower-
level classes. A Facade
is opaque in the sense
that a caller does not
access the lower-level
classes directly. The use
of Facade patterns
recursively yields a
layered system.

• Compiler class is a facade hiding the Scanner, Parser,
ProgramNodeBuilder and CodeGenerator.

Example: Compiler subsystem

53

Some specialized apps might
need to access the classes
directly, but most don’t.

• Shields a client from the low-level classes of a subsystem.

• Simplifies the use of a subsystem by providing higher-level

methods.

• Promotes “looser” coupling between subsystems.

• Note the use of delegation to reduce coupling.

• Note the similarity to the Controller GRASP pattern.

Facade Pattern: consequences

54

• Use key phrases from design goals to help choose pattern

Heuristics for Selecting Design Patterns

55

Phrase Design Pattern

“Must support aggregate structures”

“Must allow for hierarchies of variable depth and width” Composite

“Must have mechanism to process aggregate structure”

“Must support multiple traversals at same time” Iterator

“Must comply with existing interface”

“Must reuse existing legacy component” Adapter

“Must be notified of changes” Observer
“Must allow functionality to be added during runtime”

“Client programs must be able to add functionality” Decorator

“Policy and mechanisms should be decoupled”

“Must allow different algorithms to be interchanged at
runtime”

Strategy

