

3

How can a function call itself?

• Infinite Recursion:

This is a recursive function. This is a recursive function.

Note: If you encounter infinite recursion in Lab, be sure to STOP your program BEFORE running it again!!!

Recursive message() modified

How about this one?

```
void message(int n) {
    if (n > 0) {
        cout << "This is a recursive function.\n";
        message(n-1);
    }
}
int main() {
    message(5);
}</pre>
```

4

Tracing the calls

• 6 nested calls to message:

```
message(5):
    outputs "This is a recursive function"
    calls message(4):
        outputs "This is a recursive function"
        calls message(3):
        outputs "This is a recursive function"
        calls message(2):
        outputs "This is a recursive function"
        calls message(1):
        outputs "This is a recursive function"
        calls message(0):
            does nothing, just returns
```

• depth of recursion (#times it calls itself) = 5.

How to write recursive functions

- Branching is required (If or switch)
- Find a <u>base case</u>
 - one (or more) values for which the result of the function is **known** (no repetition required to solve it)
 - no recursive call is allowed here
- Develop the <u>recursive case</u>
 - For a given argument (say n), assume the function works for a smaller value (n-1).
 - Use the result of calling the function on n-1 to form a solution for n

Recursive function example

• Mathematical definition of n! (factorial of n)

```
if n=0 then n! = 1
if n>0 then n! = 1 \times 2 \times 3 \times \dots \times n
```

- What is the base case?
 - n=0 (the result is 1)
- Recursive case: If we assume (n-1)! can be computed, how can we get n! from that?

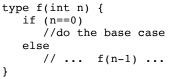
7

- n! = n * (n-1)!

Recursive function example

```
int factorial(int n) {
    if (n==0)
        return 1;
    else
        return n * factorial(n-1);
}
```

Tracing the calls


• Calls to factorial:

```
factorial(4):
  return 4 * factorial(3); =4*6=24
  calls factorial(3):
    return 3 * factorial(2); =3*2=6
    calls factorial(2):
        return 2 * factorial(1); =2*1=2
        calls factorial(1):
        return 1 * factorial(0); =1*1=1
        calls factorial(0):
        return 1;
```

- Every call except the last makes a recursive call
- Each call makes the argument smaller

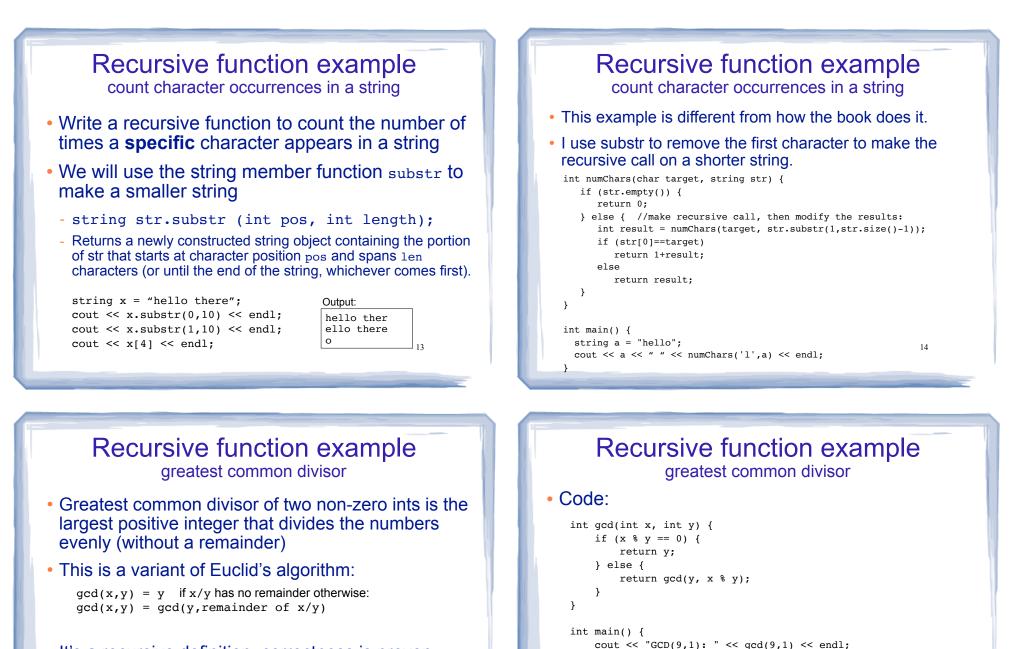
Recursive functions: ints and lists

Recursive functions over integers follow this pattern:

- Recursive functions over lists (arrays, linked lists, strings) use the length of the list in place of n
 - base case: if (length==0) ... // empty list
 - recursive case: assume f works for list of length n-1, compute the answer for a list with one more element.

Recursive function example

- Recursive function to compute sum of a list of numbers
- What is the base case?
 - length=0 (empty list) => sum = 0
- If we assume we can sum the first n-1 items in the list, how can we get the sum of the whole list from that?


- sum (list) = sum (list[0]..list[n-2]) + list[n-1]

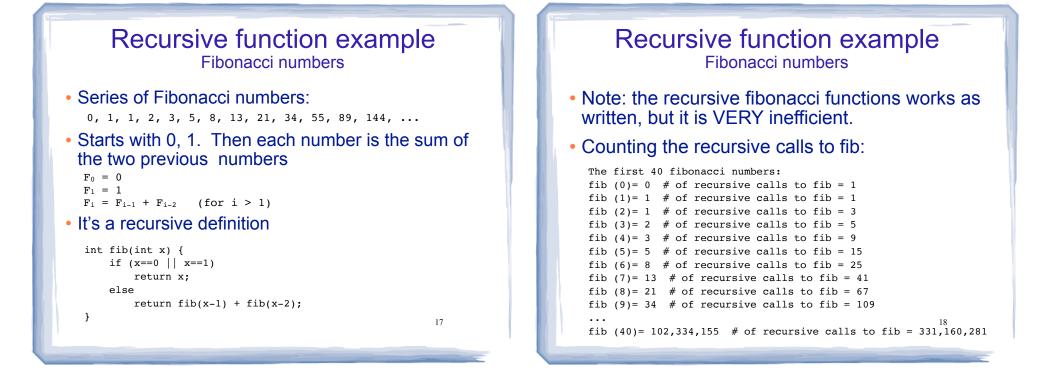
```
Assume I am given the answer to this
```

11

9

Recursive function example sum of a list (array)

}


• It's a recursive definition, correctness is proven elsewhere.

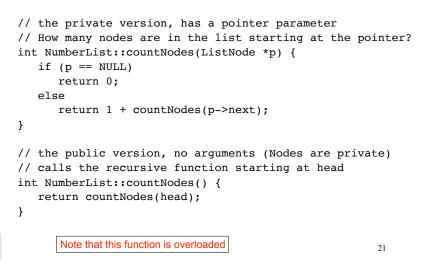
15

16

cout << "GCD(1,9): " << gcd(1,9) << endl;

cout << "GCD(9,2): " << gcd(9,2) << endl; cout << "GCD(70,25): " << gcd(70,25) << endl; cout << "GCD(25,70): " << gcd(25,70) << endl;</pre>

Recursive functions over linked lists

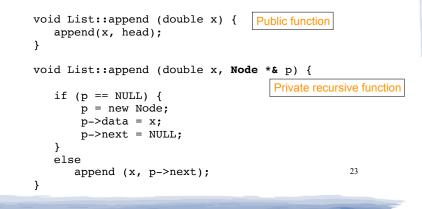

- Member functions of a linked list class can be defined recursively.
 - These functions take a pointer to a node in the list as a parameter
 - They compute the function for the list starting at the node p points to.
- The pattern:
 - base case: empty list, when p is NULL
 - recursive case: assume f works for list starting at p->next, what is the answer for the list starting at p? (it has one more element).

Recursive function example count the number of nodes in a list

class NumberList

```
private:
      struct ListNode {
         double value;
         struct ListNode *next;
      };
      ListNode *head;
      int countNodes(ListNode *); //private version, recursive
   public:
      NumberList();
      NumberList(const NumberList & src);
      ~NumberList();
      void appendNode(double);
      void insertNode(double);
      void deleteNode(double);
      void displayList();
      int countNodes();
                                 //public version, calls private
};
                                                        20
```

Recursive function example count the number of nodes in a list



Recursive function example display the node values in reverse order

```
// the private version, needs a pointer parameter
void NumberList::reverseDisplay(ListNode *p) {
    if (p == NULL) {
        //do nothing
    } else {
        //display the "rest" of the list in reverse order
        reverseDisplay(p->next);
        cout << p->value << " ";
    }
}
// the public version, no arguments
void NumberList::reverseDisplay() {
    reverseDisplay(head);
    cout << endl;
}
```

Linked List example:

- Append x to the end of a singly linked list:
 - Pass the node pointer by reference
 - Recursive

Why use recursion?

- It is true that recursion is never **required** to solve a problem
 - Any problem that can be solved with recursion can also be solved using iteration.
- Recursion requires extra overhead: function call
 + return mechanism uses extra resources

However:

- Some repetitive problems are more easily and naturally solved with recursion
 - the recursive solution is often shorter, more elegant, easier to read and debug.