
1

Week 3
Functions & Arrays

Gaddis: Chapters 6 and 7

CS 5301
Spring 2017

Jill Seaman

2

Function Definitions
l Function definition pattern:

★ datatype: the type of data returned by the function.
★ identifier: the name by which it is possible to call the

function.
★ parameters: Like a regular variable declaration, act

within the function as a regular local variable. Allow
passing arguments to the function when it is called.

★ statements: the function's body, executed when called.

datatype identifier (parameter1, parameter2, ...) {
 statements . . .
}

datatype identifier

Where a parameter is:

3

Function Call, Return Statement
l Function call expression

★ Causes control flow to enter body of function named
identifier.

★ parameter1 is initialized to the value of expression1,
and so on for each parameter

★ expression1 is called an argument.
l Return statement:

★ inside a function, causes function to stop, return
control to caller.

l The value of the return expression becomes the
value of the function call

identifier (expression1, . . .)

return expression;

4

Example: Function

l What are the parameters? arguments?
l What is the value of: addition (5,3)?
l What is the output?

// function example
#include <iostream>
using namespace std;
int addition (int a, int b) {
 int result;
 result=a+b;
 return result;
}
int main () {
 int z;
 z = addition (5,3);
 cout << "The result is " << z <<endl;
}

5

Void function
l A function that returns no value:

✴ use void as the return type.
l the function call is now a statement (it does not

have a value)

void printAddition (int a, int b) {
 int result;
 result=a+b;
 cout << “the answer is: “ << result << endl;
}

int main () {
 printAddition (5,3);
}

6

Prototypes
l In a program, function definitions must occur

before any calls to that function
l To override this requirement, place a prototype of

the function before the call.
l The pattern for a prototype:

✴ the function header without the body (parameter
names are optional).

datatype identifier (type1, type2, ...);

7

Arguments passed by value

l Pass by value: when an argument is passed to a
function, its value is copied into the parameter.

l It is implemented using variable initialization (in
the background): 

l Changes to the parameter in the function body
do not affect the value of the argument in the
call

l The parameter and the argument are stored in
separate variables; separate locations in
memory.

int param = argument;

8

Example: Pass by Value

l  
#include <iostream>
using namespace std;

void changeMe(int);

int main() {
 int number = 12;
 cout << "number is " << number << endl;
 changeMe(number);
 cout << "Back in main, number is " << number << endl;
 return 0;
}

void changeMe(int myValue) {
 myValue = 200;
 cout << "myValue is " << myValue << endl;
}

Output:
number is 12
myValue is 200
Back in main, number is 12

int myValue = number;

changeMe failed to change the argument!

9

Parameter passing by Reference

l Pass by reference: when an argument is passed
to a function, the function has direct access to
the original argument (no copying).

l Pass by reference in C++ is implemented using
a reference parameter, which has an ampersand
(&) in front of it: 

l A reference parameter acts as an alias to its
argument, it is NOT a separate storage location.

l Changes to the parameter in the function DO
affect the value of the argument

void changeMe (int &myValue);

10

Example: Pass by Reference

l  
#include <iostream>
using namespace std;

void changeMe(int &);

int main() {
 int number = 12;
 cout << "number is " << number << endl;
 changeMe(number);
 cout << "Back in main, number is " << number << endl;
 return 0;
}

void changeMe(int &myValue) {
 myValue = 200;
 cout << "myValue is " << myValue << endl;
}

Output:
number is 12
myValue is 200
Back in main, number is 200

myValue is an alias for number, 
only one shared variable

11

Example: Boolean functions

l  
bool isEven(int number) {
 bool status;
 if (number % 2 == 0)
 status = true; // number is even if there is no remainder.
 else
 status = false; // Otherwise, the number is odd.
 return status;
}

int main() {
 int val;
 cout << "Enter an integer and I will tell you ";
 cout << "if it is even or odd: ";
 cin >> val;

 if (isEven(val))
 cout << val << " is even.\n";
 else
 cout << val << " is odd.\n";
}

Returns a true or false

Function call used as a
boolean expression

12

Arrays
l An array is:
- A series of elements of the same type
- placed in contiguous memory locations
- that can be individually referenced by adding an

index to a unique identifier.
l To declare an array:

- datatype is the type of the elements
- identifier is the name of the array
- size is the number of elements (constant)

int numbers[5];datatype identifier [size];

13

Array initialization
l To specify contents of the array in the definition:

- creates an array of size 3 containing the
specified values.

- creates an array containing the specified values
followed by 7 zeros (partial initialization).

- creates an array of size 3 containing the
specified values (size is determined from list).

float scores[] = {86.5, 92.1, 77.5};

float scores[3] = {86.5, 92.1, 77.5};

float scores[10] = {86.5, 92.1, 77.5};

14

Array access
l to access the value of any of the elements of the

array individually as if it was a normal variable:

- scores[2] is a variable of type float
- use it anywhere a float variable can be used.

l rules about subscripts:
- always start at 0, last subscript is size-1
- must have type int but can be any expression

l watchout: square brackets are used both to
declare the array and to access elements.

scores[2] = 89.5;

15

Arrays: operations

l Valid operations over entire arrays:
− function call: myFunc(scores,x);

l Invalid operations over entire arrays:
− assignment: array1 = array2;
− comparison: array1 == array2
− output: cout << array1;
− input: cin >> array2;
− Must do these element by element, probably

using a for loop
16

Processing arrays

l Assignment: copy one array to another

l Output: displaying the contents of an array

const int SIZE = 4;
int oldValues[SIZE] = {10, 100, 200, 300};
int newValues[SIZE];

for (int count = 0; count < SIZE; count++)
 newValues[count] = oldValues[count];

const int SIZE = 5;
int numbers[SIZE] = {10, 20, 30, 40, 50};

for (int count = 0; count < SIZE; count++)
 cout << numbers[count] << endl;

17

Processing arrays

const int NUM_SCORES = 8;
int scores[NUM_SCORES];
cout << “Enter the “ << NUM_SCORES
 << “ programming assignment scores: “ << endl;

for (int i=0; i < NUM_SCORES; i++) {
 cin >> scores[i];
}

int total = 0; //initialize accumulator
for (int i=0; i < NUM_SCORES; i++) {
 total = total + scores[i];
}
double average =
 static_cast<double>(total) / NUM_SCORES;

Summing and averaging of an array of scores:

18

Finding highest and lowest
values in arrays

l Maximum: Need to track the highest value seen
so far. Start with highest = first element.

const int SIZE = 5;
int array[SIZE] = {10, 100, 200, 30};

int highest = array[0];
for (int count = 1; count < SIZE; count++)
 if (array[count] > highest)
 highest = array[count];

cout << “The maximum value is ” << highest << endl;

19

Comparing arrays

l Equality: Are the arrays exactly the same? 
Must examine entire array to determine true 
Only one counter-example proves it is false

const int SIZE = 5;
int firstArray[SIZE] = {10, 100, 200, 300};
int secondArray[SIZE] = {10, 100, 201, 300};

bool arraysEqual = true; //assume true, until proven false

for (int count = 0; count < SIZE && arraysEqual; count++)
 if (firstArray[count] != secondArray[count])
 arraysEqual=false;

if (arraysEqual)
 cout << “The arrays are equal” << endl;
else
 cout << “The arrays are not equal” << endl;

l In the function definition, the parameter type is a
variable name with an empty set of brackets: []

- Do NOT give a size for the array inside [] 

l In the prototype, empty brackets go after the
element datatype. 

l In the function call, use the variable name for the
entire array.

l An array is always passed by reference.
20

Arrays as parameters

void showArray(int values[], int size)

void showArray(int[], int)

showArray(numbers, 5)

21

Example: Partially filled arrays
int sumList (int list[], int size) {//sums elements in list array
 int total = 0;
 for (int i=0; i < size; i++) {
 total = total + list[i];
 return total;
}
const int CAPACITY = 100;
int main() {
 int scores[CAPACITY];
 int count = 0; //tracks number of elems in array
 cout << “How many programming assignment scores?” << endl;
 cin >> count;
 if (count <= 100) {
 cout << “Enter the scores, one per line: ” << endl;
 for (int i=0; i<count; i++)
 cin >> scores[i];
 int sum = sumList(scores,count);
 cout << “average: “<< sum/static_cast<double>(count) <<endl;
 } else
 cout << “There can be at most 100 scores.” << endl;
}

sums from position 0 to size-1,
even if the array is bigger.

pass count, not CAPACITY

