
Structures

Unit 7 

Gaddis: 11.2-8 

CS 1428 
Fall 2017 

Jill Seaman

1

Data Types

2

l A Data Type consists of: 
‣ set of values 

‣ set of operations over those values 

l example: Integer 
‣ whole numbers, -32768 to 32767 

‣ +, -, *, /, %, ==, !=, <, >, <=, >=, ... 

l Which operation is not valid for float?

Data Types (C/C++)

3

l Scalar (or Basic, Primitive) Data Types 
‣ atomic values, such as: 

‣ Integers: 
➡ short, int, long, char, bool 

‣ Floating Points: 
➡ float, double, long double 

l Composite (or Aggregate) Types: 
‣ values of these types are composed from other values. 

‣ Arrays: ordered sequence of values of the same type 

‣ Structures: named components of various types

11.2 Structures

4

l Composite data type used to group multiple 
variables together into a unit. 

l Example: student 
‣ ID Number 

‣ Name 

‣ Age 

‣ Major 

l Each student has a value for each of these 
variables (or attributes).



Structures in C++

5

l Define the student as a struct in C++: 
 
 

l NOTE: semicolon after last curly bracket! 
l A struct is a data type, and by convention the 

name is capitalized. 
l The components are called “members” (or 

“fields”).

struct Student {
   int idNumber;
   string name;
   int age;
   string major;
};

Defining structure variables

6

• So far we have defined a new data type, but we 
haven’t defined any variables of that type. 

• To define a variable of type Student: 

• Can define multiple variables of type Student: 

• Each one has its own set of the member 
variables in the Student data type

Student myStudent;

Student student1, student2, aGradStudent;

• Each variable of type Student has its own set of 
the member variables from the Student data type

Defining structure variables

7

Student student1, student2;

idNumber

name

age

major

student1
idNumber

name

age

major

student2

11.3 Accessing Structure Members

8

l Use dot operator to access members of a struct 
variable: 
 

l Member variables of structures can be used just 
like regular variables of the same type.

student1.age = 18;
student2.idNumber = 123456;
cin >> aGradStudent.name;
aGradStudent.major = ”Rocket Science”;

student1.age++;     //happy birthday
myFunc(student2.idNumber);
if (student1.age==student2.age) {
   ...
}



Operations over structures:

9

• Valid operations over entire structs: 
‣ assignment:  student1 = student2; 

‣ function call:  myFunc(gradStudent,x); 

• Invalid operations over entire structs: 
‣ comparison:  student1 == student2 

‣ output:   cout << student1;  

‣ input:     cin >> student2; 

‣ Must do these member by member! 

• How is this different from Arrays?

Outputting & comparing  
structure variables

10

l Output the members one at a time: 

l Comparing two structs:

cout << student1.idNumber << " ";
cout << student1.name << " ";
cout << student1.age << " ";
cout << student1.major << endl;

if (student1.idNumber == student2.idNumber &&
    student1.name == student2.name &&
    student1.age == student2.age &&
    student1.major == student2.major)
...

11122 Chris Johnson 19 Chemistry Output:

11.4 Initializing a Structure

11

• Struct variable can be initialized when it is 
defined: 

• Must give values of members in order of the 
struct declaration. 

• Can NOT initialize members in structure 
declaration, only variable definition:

Student student1 = {123456,”John Smith”,22, ”Math”};

struct StudentA {
   int id = 123456;            //ILLEGAL
   string name = “John Smith”; //ILLEGAL
}

12

struct EmployeePay  {
   string name;         // Employee name
   int empNum;          // Employee number
   double payRate;      // Hourly pay rate
   double hours;        // Hours worked
   double grossPay;     // Gross pay
};

int main()  {
   EmployeePay employee1 = {"Betty Ross", 141, 18.75};
   EmployeePay employee2 = {"Jill Sandburg", 142, 17.50};

   cout << fixed << setprecision(2);

   // Calculate pay for employee1
   cout << "Name: " << employee1.name << endl;
   cout << "Employee Number: " << employee1.empNum << endl;
   cout << "Enter the hours worked by this employee: ";
   cin >> employee1.hours;
   employee1.grossPay = employee1.hours * employee1.payRate;
   cout << "Gross Pay: " << employee1.grossPay << endl << endl;

   // Calculate pay for employee2
   cout << "Name: " << employee2.name << endl;
   cout << "Employee Number: " << employee2.empNum << endl;
   cout << "Enter the hours worked by this employee: ";
   cin >> employee2.hours;
   employee2.grossPay = employee2.hours * employee2.payRate;
   cout << "Gross Pay: " << employee2.grossPay << endl;
}

Initializes only name,  
empNum, and payRate



13

 Name: Betty Ross 
 Employee Number: 141 
 Enter the hours worked by this employee:  40 [Enter] 
 Gross Pay: 750.00 

 Name: Jill Sandburg 
 Employee Number: 142 
 Enter the hours worked by this employee:  20 [Enter] 
 Gross Pay: 350.00 

Sample output from previous program:
11.5 Arrays of Structures

14

• You can store values of structure types in arrays. 

• Each student structure is accessible via the 
subscript notation: 

• Members of structure accessible via dot operator

Student roster[40];  //holds 40 Student structs

cout << roster[0].name << endl;  

roster[0] = student1; //copies student1 to first elem.

Arrays of Structures

15

• Arrays of structures processed in loops:
Student roster[40];

//input
for (int i=0; i<40; i++) {
  cout << "Enter the name, age, idNumber and "
       << "major of the next student: \n";
  cin >> roster[i].name >> roster[i].age 
      >> roster[i].idNumber >> roster[i].major;
}

//output all the id numbers and names
for (int i=0; i<40; i++) {
  cout << roster[i].idNumber << endl;
  cout << roster[i].name << endl;
}

11.6 Nested Structures

16

• You can nest one structure inside another.
struct Address {
   string street;
   string city;
   string state;
   int zip;
};

struct Student {
   int idNumber;
   string name;
   Address homeAddress;
};
 



Nested Structures

17

l Use dot operator multiple times to get into the 
nested structure: 

l Or set up address structure separately:

Student student1;
student1.name = “Bob Lambert”;
student1.homeAddress.city = “San Angelo”;
student1.homeAddress.state = “TX”; 

Address a1;
a1.street = “101 Main St.”;
a1.city = “San Angelo”;
a1.state = “TX”;
a1.zip = 76903;

student1.name = “Bob Lambert”;
student1.homeAddress = a1; 

11.7 Structures as function 
arguments

18

• Structure variables may be passed as arguments 
to functions.
void showStudent(Student x) {
   cout << x.idNumber << endl;
   cout << x.name << endl;
   cout << x.age << endl;
   cout << x.major << endl;
}

int main() {
  Student student1;

  //input information about student1 here

  showStudent(student1);
}

Note: Student  
declaration 
must be global!!

Structures as function arguments

19

l By default, structure variables are passed by 
value (like most variables). 

l If the function needs to change the value of a 
member, the structure variable should be 
passed by reference.

void happyBirthday(Student &s) {
   s.age++;          //or s.age = s.age+1;
}

11.8 Returning a Structure from a 
Function

20

• A function may return a structure.
Student inputStudent(ifstream &fin) {
   Student result;
   fin >> result.idNumber;
   fin >> result.name;
   fin >> result.age;
   fin >> result.major;
   return result;
}
int main() {
   ifstream inFile;
   inFile.open(“students.dat”);
   Student student1 = inputStudent(inFile);
   for (int i=0; i<40; i++)
      roster[i] = inputStudent(inFile);
   inFile.close();
}

Note: always  
pass iostreams  
by reference!!


