
1

Searching & Sorting
Week 11

Gaddis: 8, 19.6,19.8

CS 5301
Fall 2017

Jill Seaman
2

Definitions of Search and Sort

l Search: find a given item in a list, return the
position of the item, or -1 if not found.

l Sort: rearrange the items in a list into some
order (smallest to biggest, alphabetical order,
etc.). 

l “list” could be: array, linked list, string, etc.
l There are various methods (algorithms) for

carrying out these common tasks.

3

Linear Search

l Compare first element to target value,  
if not found then compare second element to target value
. . .

l Repeat until: 
target value is found (return its position) or  
we run out of items (return -1).

int searchList (int list[], int size, int value) {

 for (int i=0; i<size; i++)
 {
 if (list[i] == value)
 return i;
 }
 return -1;
} 4

Other forms of Linear Search

l Recursive linear search over arrays
− Gaddis ch 19, Prog Challenge #8: isMember

l Linear search over linked list
− Gaddis ch 17, Prog Challenge #5: List search

l Recursive linear search over linked list
− Another good exercise

5

Binary Search
l Works only for SORTED arrays
l Divide and conquer style algorithm
l Compare target value to middle element in list.

− if equal, then return its index
− if less than middle element, repeat the search in

the first half of list
− if greater than middle element, repeat the search

in last half of list
l If current search list is narrowed down to 0

elements, return -1 6

Binary Search Algorithm
example

target is 11 first

first

first

last

last

last

target < 50

target > 7

target == 11

7

Binary Search in C++
Iterative version

int binarySearch (int array[], int size, int target) {

 int first = 0, //index to (current) first elem
 last = size – 1, //index to (current) last elem
 middle, //index of (current) middle elem
 position = -1; //index of target value
 bool found = false; //flag

 while (first <= last && !found) {

 middle = (first + last) /2; //calculate midpoint

 if (array[middle] == target) {
 found = true;
 position = middle;
 } else if (target < array[middle]) {
 last = middle – 1; //search lower half
 } else {
 first = middle + 1; //search upper half
 }
 }
 return position;
} 8

Binary Search in C++
Recursive version

int binarySearchRec(int array[], int first, int last, int value)
{
 int middle; // Mid point of search

 if (first > last) //check for empty list
 return -1;
 middle = (first + last)/2; //compute middle index
 if (array[middle]==value)
 return middle;
 if (value < array[middle]) //recursion
 return binarySearchRec(array, first,middle-1, value);
 else
 return binarySearchRec(array, middle+1,last, value);
}

int binarySearch(int array[], int size, int value) {
 return binarySearchRec(array, 0, size-1, value);
}

9

What is sorting?
l Sort: rearrange the items

in a list into ascending or
descending order
- numerical order
- alphabetical order
- etc.

55 112 78 14 20 179 42 67 190 7 101 1 122 170 8

1 7 8 14 20 42 55 67 78 101 112 122 170 179 190
10

Selection Sort

l There is a pass for each position (0..size-1)
l On each pass, the smallest (minimum)

element in the rest of the list is exchanged
(swapped) with element at the current
position.

l The first part of the list (the part that is already
processed) is always sorted

l Each pass increases the size of the sorted
portion.

11

Selection sort
Example

l 36 24 10 6 12 pass 1: minimum is 6, swap
l 6 24 10 36 12 pass 2: minimum is 10, swap
l 6 10 24 36 12 pass 3: minimum is 12, swap
l 6 10 12 36 24 pass 4: minimum is 24, swap
l 6 10 12 24 36 sorted

Note: first n elements are sorted after pass n

12

Selection sort: code
// Returns the index of the smallest element, starting at start
int findIndexOfMin (int array[], int size, int start) {
 int minIndex = start;
 for (int i = start+1; i < size; i++) {
 if (array[i] < array[minIndex]) {
 minIndex = i;
 }
 }
 return minIndex;
}

// Sorts an array, using findIndexOfMin
void selectionSort (int array[], int size) {
 int minIndex;
 for (int index = 0; index < (size -1); index++) {
 minIndex = findIndexOfMin(array, size, index);
 swap(array[minIndex],array[index]);
 }
}

13

Bubble sort
l On each pass:
- Compare first two elements. If the first is bigger, they

exchange places (swap).
- Compare second and third elements. If second is

bigger, exchange them.
- Repeat until last two elements of the list are compared.

l Repeat this process until a pass
completes with no exchanges

14

Bubble sort
Example

l 7 2 3 8 9 1 7 > 2, swap
l 2 7 3 8 9 1 7 > 3, swap
l 2 3 7 8 9 1 !(7 > 8), no swap
l 2 3 7 8 9 1 !(8 > 9), no swap
l 2 3 7 8 9 1 9 > 1, swap
l 2 3 7 8 1 9 finished pass 1, did 3 swaps

Note: largest element is in last position

15

Bubble sort
Example

l 2 3 7 8 1 9 2<3<7<8, no swap, !(8<1), swap
l 2 3 7 1 8 9 (8<9) no swap
l finished pass 2, did one swap 

l 2 3 7 1 8 9 2<3<7, no swap, !(7<1), swap
l 2 3 1 7 8 9 7<8<9, no swap
l finished pass 3, did one swap

2 largest elements in last 2 positions

3 largest elements in last 3 positions

16

Bubble sort
Example

l 2 3 1 7 8 9 2<3, !(3<1) swap, 3<7<8<9
l 2 1 3 7 8 9
l finished pass 4, did one swap
l 2 1 3 7 8 9 !(2<1) swap, 2<3<7<8<9
l 1 2 3 7 8 9
l finished pass 5, did one swap
l 1 2 3 7 8 9 1<2<3<7<8<9, no swaps
l finished pass 6, no swaps, list is sorted!

17

Bubble sort
how does it work?

l At the end of the first pass, the largest element is
moved to the end (it’s bigger than all its
neighbors)

l At the end of the second pass, the second largest
element is moved to just before the last element.

l The back end (tail) of the list remains sorted.
l Each pass increases the size of the sorted

portion.
l No exchanges implies each element is smaller

than its next neighbor (so the list is sorted).
18

Bubble sort: code
template<class ItemType>
void bubbleSort (ItemType a[], int size) {

 bool swapped;
 do {
 swapped = false;
 for (int i = 0; i < (size-1); i++) {
 if (a[i] > a[i+1]) {
 swap(a[i],a[i+1]);
 swapped = true;
 }
 }
 } while (swapped);
}

19

Quick sort
l Divide and conquer!
l 2 (hopefully) half-sized lists sorted

recursively
l the algorithm:
- If list size is 0 or 1, return. otherwise:
- partition into two lists:

❖ pick one element as the pivot
❖ put all elements less than pivot in first half
❖ put all elements greater than pivot in second half

- recursively sort first half and then second half of list.
20

Quicksort
Example.

21

Quicksort: partitioning
l Goal: partition a sub-array so that:
- A[x]<=A[p] for all x<p and A[x]>=A[p] for all x>p

l 4 8 5 6 3 19 12 pick some element as the pivot
l rearrange the array so that if the value is less than

6 it is placed before the 6, if the value is greater
than the 6 it is placed after the 6.

l For an array, this might require some swapping
and shifting.

l 4 3 5 6 8 19 12 return 3 as index of pivot (6)
22

Quicksort: code
int partition (int [], int, int); //defined in Gaddis

void quickSort(int array[], int start, int end) {
 if (start < end) {
 // Get the pivot point (and partition the set).
 int pivotPoint = partition(array, start, end);
 // Sort the first sub list.
 quickSort(array, start, pivotPoint - 1);
 // Sort the second sub list.
 quickSort(array, pivotPoint + 1, end);
 }
}
void quickSort (int array[], int size) {
 quickSort(array, 0, size-1);
}

