Recursion |

* Generally, when something
contains a reference to itself

* Math: defining a function in terms
of itself

Week 10

Gaddis:19.1-19.5 (8th ed.)
Gaddis:20.1-20.5 (9th ed.)

« Computer science: when a

CS 5301 function calls itself:

Spring 2018

void message() {
cout << “This is a recursive function.\n”;
message();

}
int main() {
message();

Jill Seaman

1 } What happens when this is executed? 2

How can a function call itself? Recursive message() modified

* Infinite Recursion: * How about this one?

Note: If you encounter infinite recursion in Lab, be sure
to STOP your program BEFORE running it again!!!

This is a recursive function. . .

This is a recursive function. V01§ message(int n) {

This is a recursive function. if (n > 0) {
This is a recursive function. cout << “This is a recursive function.\n”;
This is a recursive function. message(n-1);

This is a recursive function. }

This is a recursive function. }

This is a recursive function. int main() {

This is a recursive function. message(5);

This is a recursive function. }

This is a recursive function.

— I

Tracing the calls

6 nested calls to message:

message(5):
outputs “This is a recursive function”
calls message(4):
outputs “This is a recursive function”
calls message(3):
outputs “This is a recursive function”
calls message(2):
outputs “This is a recursive function”
calls message(l):
outputs “This is a recursive function”
calls message(0):
does nothing, just returns

depth of recursion (#times it calls itself) = 5:

\

Recursive function example
factorial

Mathematical definition of n! (factorial of n)
if n=0 then n! 1
if n>0 then n! 1

X 2 X 3X ... xn-1zxn

What is the base case?
n=0 (the resultis 1)

Recursive case: If we assume (n-1)! can be
computed, how can we get n! from that?

n'=n*(n-1)

— _ :

(. e functions

ow to write recursive functions

Branching is required (If or switch)
Find a base case

one (or more) values for which the result of the
function is known (no repetition required to solve it)

no recursive call is allowed here
Develop the recursive case

For a given argument (say n), assume the function
works for a smaller value (n-1).

Use the result of calling the function on n-1 to form a

solution for n .

\

— _ :

Recursive function example
factorial

int factorial(int n) {
if (n==0)
return 1;
else
return n * factorial(n-1);

int main() {
int number;
cout << “Enter a number “;
cin >> number;
cout << “The factorial of “ << number << “ is “
<< factorial(number) << endl;

— I

Tracing the calls

Calls to factorial:

factorial(4):

return 4 * factorial(3); =4*6=24
calls factorial(3):
return 3 * factorial(2); =3*2=6
calls factorial(2): \\
return 2 * factorial(l); =2*1=2

calls factorial(l):
return 1 * factorial(0); =1*1=1

calls faCtO?iiiigli/’//////”
return 1;
Every call except the last makes a recursive call
Each call makes the argument smaller

|

Recursive function example
sum of the list

Recursive function to compute sum of a list of
numbers
What is the base case?

length=0 (empty list) =>sum =0

If we assume we can sum the first n-1 items in
the list, how can we get the sum of the whole list
from that?

sum (list) = sum (list[0]..list[n-2]) + list[n-1]

Assume | am given the answer to this

' Recursive functions: ints and lists

Recursive functions over integers follow this
pattern:

type f(int n) {
if (n==0)
//do the base case
else
// ... £f(n-1) ...

}

Recursive functions over lists (arrays, linked lists,
strings) use the length of the list in place of n

base case: if (length==0) ... // empty list

recursive case: assume f works for list of length n-1,
compute the answer for a list with one more element.

|

Recursive function example
sum of a list (array)

int sum(int a[], int size) { //size is number of elems
if (size==0)
return 0;
else
return sum(a,size-1) + a[size-1];

call sum on first n-1 elements The last element
For a list with size = 4: sum(a,4) =

sum(a,3)

(sum(a,2) + a[2])

((sum(a,l) + a[l]) + a[2])
(((sum(a,0) + a[0]) + a[l]) + a[2])
0 + a[0] + a[l] + a[2]

a[3]
a[3]
a[3]
a[3]
a[3]

+ + + 4+ +

| Recursive function example

count character occurrences in a string

Write a recursive function to count the number of
times a specific character appears in a string

We will use the string member function substr to
make a smaller string:

string str.substr (int pos, int length);

Returns a newly constructed string object containing the portion
of str that starts at character position pos and spans 1en
characters (or until the end of the string, whichever comes first).

string x = “hello there”; Output:

cout << x.substr(0,10) << endl; hello ther
cout << x.substr(1l,10) << endl; ello there
cout << x[4] << endl; © 13

|

Recursive function example

greatest common divisor

Greatest common divisor of two non-zero ints is the
largest positive integer that divides the numbers
evenly (without a remainder)

This is a variant of Euclid’s algorithm:

y if x/y has no remainder otherwise:
gcd(y,remainder of x/y)

gcd(x,Y)
gcd(x,Y)

It's a recursive definition, correctness is proven
elsewhere.

| Recursive function example

count character occurrences in a string

This example is different from how the book does it.

| use substr to make a copy of str with the first character
removed to make the recursive call on a shorter string.

int numChars(char target, string str) {

if (str.empty()) {
return 0;

} else { //make recursive call, then modify the results:
int result = numChars(target, str.substr(1l,str.size()-1));
if (str[0]==target)

return l+result;
else
return result;
}
}

int main() {
string a = "hello";
cout << a << “ “ << numChars('l',a) << endl;

}

|

Recursive function example

greatest common divisor
Code:

int ged(int x, int y) {
if (x 8y == 0) {
return y;
} else {
return gecd(y, x % y);
}

int main() {

cout << "GCD(9,1): " << gcd(9,1) << endl;
cout << "GCD(1l,9): " << gcd(1l,9) << endl;
cout << "GCD(9,2): " << gcd(9,2) << endl;
cout << "GCD(70,25): " << gecd(70,25) << endl;
cout << "GCD(25,70): " << gcd(25,70) << endl;

| Recursive function example

Fibonacci numbers

Series of Fibonacci numbers:
o, 1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Starts with 0, 1. Then each number is the sum of
the two previous numbers

Fo =0
F,. =1
Fi = Fi-1 + Fi2 (for i > 1)

It's a recursive definition

int fib(int x) {
if (x==0 || x==1)
return x;
else
return fib(x-1) + fib(x-2);

|

Recursive functions over linked lists

Member functions of a linked list class can be
defined recursively.

These functions take a pointer to a node in the list
as a parameter

They compute the function for the list starting at the
node p points to.

The pattern:
base case: empty list, when p is NULL

recursive case: assume f works for list starting at
p->next, what is the answer for the list starting at p?
(it has one more element). "

| Recursive function example

Fibonacci numbers

Note: the recursive fibonacci functions works as
written, but it is VERY inefficient.

Counting the recursive calls to fib:

The first 40 fibonacci numbers:

fib (0)= 0 # of recursive calls to fib =1
fib (1)= 1 # of recursive calls to fib =1
fib (2)= 1 # of recursive calls to fib = 3
fib (3)= 2 # of recursive calls to fib = 5
fib (4)= 3 # of recursive calls to fib = 9
fib (5)= 5 # of recursive calls to fib = 15
fib (6)= 8 # of recursive calls to fib = 25
fib (7)= 13 # of recursive calls to fib = 41
fib (8)= 21 # of recursive calls to fib = 67
fib (9)= 34 # of recursive calls to fib = 109

‘e 18
fib (40)= 102,334,155 # of recursive calls to fib = 331,160,281

Recursive function example

count the number of nodes in a list

class NumberList
{
private:
struct ListNode {
double value;
struct ListNode *next;
}i
ListNode *head;
int countNodes(ListNode *); //private version, recursive

public:

NumberList();
NumberList (const NumberList & src);
~NumberList();
void appendNode(double);
void insertNode(double);
void deleteNode(double);
void displayList();
int countNodes();

}i

20

//public version, calls private

Recursive function example

count the number of nodes in a list

// the private version, has a pointer parameter
// How many nodes are in the list starting at the pointer?
int NumberList::countNodes(ListNode *p) {
if (p == NULL)
return 0;
else
return 1 + countNodes(p->next);

}

// the public version, no arguments (Nodes are private)
// calls the recursive function starting at head
int NumberList::countNodes() {

return countNodes (head);

}

’NmemmmSMMManmbwaﬂ 21

Linked List example:

Append x to the end of a singly linked list:

Pass the node pointer by reference
Recursive

void List::append (double x) { [::::::::::]

append(x, head);
}

void List::append (double x, Node *& p) {

if (p == NULL) {
p = new Node;
p->data = x;
p->next = NULL;
}
else
append (x, p->next); 23

Recursive function example

display the node values in reverse order

// the private version, needs a pointer parameter
void NumberList::reverseDisplay(ListNode *p) {
if (p == NULL) {
//do nothing
} else {
//display the “rest” of the list in reverse order
reverseDisplay(p->next);
cout << p->value << *“ *“;

}

// the public version, no arguments
void NumberList::reverseDisplay() {
reverseDisplay(head);
cout << endl;

Why use recursion?

It is true that recursion is never required to
solve a problem

Any problem that can be solved with recursion can
also be solved using iteration.

Recursion requires extra overhead: function call
+ return mechanism uses extra resources

However:

Some repetitive problems are more easily and
naturally solved with recursion

the recursive solution is often shorter, more eI24egant,
easier to read and debug.

