Recursion

Week 10
Gaddis:19.1-19.5 (8th ed.)
Gaddis:20.1-20.5 (9th ed.)

CS 5301
Spring 2018
Jill Seaman

What is recursion?

- Generally, when something contains a reference to itself
- Math: defining a function in terms of itself
- Computer science: when a function calls itself:

```
void message() {
    cout << "This is a recursive function.\n";
    message();
}
int main() {
    message();
int main() \{
message();
```


Recursive message() modified

- How about this one?

```
void message(int n) {
    if (n > 0) {
        cout << "This is a recursive function.\n";
        message(n-1);
    }
}
int main() {
    message(5);
}
```

This is a recursive function.

Note: If you encounter infinite recursion in Lab, be sure to STOP your program BEFORE running it again!!!

Tracing the calls

- 6 nested calls to message:
message(5):
outputs "This is a recursive function"
calls message(4):
outputs "This is a recursive function" calls message(3):
outputs "This is a recursive function" calls message(2):
outputs "This is a recursive function" calls message(1):
outputs "This is a recursive function" calls message(0):
does nothing, just returns
- depth of recursion (\#times it calls itself) $=5$.

How to write recursive functions

- Branching is required (If or switch)
- Find a base case
- one (or more) values for which the result of the function is known (no repetition required to solve it)
no recursive call is allowed here
- Develop the recursive case
- For a given argument (say n), assume the function works for a smaller value ($n-1$).
- Use the result of calling the function on $\mathrm{n}-1$ to form a solution for n

Recursive function example

factorial

```
int factorial(int n) {
    if (n==0)
        return 1;
    else
        return n * factorial(n-1);
}
int main() {
    int number;
    cout << "Enter a number ";
    cin >> number;
    cout << "The factorial of " << number << " is "
        << factorial(number) << endl;
}
```


Recursive function example

 factorial- Mathematical definition of n ! (factorial of n)

```
if n=0 then n! = 1
if n>0 then n! = 1 x 2 x 3 x m . . x n-1 x n
```

-What is the base case?

- $\mathrm{n}=0$ (the result is 1)
- Recursive case: If we assume ($\mathrm{n}-1$)! can be computed, how can we get n ! from that?
$-n!=n$ * $n-1)$!

Tracing the calls

- Calls to factorial:

```
factorial(4):
    return 4 * factorial(3); =4*6=24
    calls factorial(3):
        return 3 * factorial(2); =3*2=6
        calls factorial(2):
        return 2 * factorial(1); =2*1=2
            calls factorial(1):
                return 1 * factorial(0); =1*1=1
            calls factorial(0):
                return 1;
```

- Every call except the last makes a recursive call
- Each call makes the argument smaller

Recursive function example

sum of the list

- Recursive function to compute sum of a list of numbers
-What is the base case?
- length=0 (empty list) => sum =0
- If we assume we can sum the first $\mathrm{n}-1$ items in the list, how can we get the sum of the whole list from that?

$$
- \text { sum (list) }=\text { sum (list[0]...list[n-2]) }+ \text { list[n-1] }
$$

Recursive functions: ints and lists

- Recursive functions over integers follow this pattern:

```
type f(int n) {
    if (n==0)
        //do the base case
    else
        // ... f(n-1) ...
```

- Recursive functions over lists (arrays, linked lists, strings) use the length of the list in place of n - base case: if (length==0) ... // empty list - recursive case: assume f works for list of length $n-1$, compute the answer for a list with one more element.

Recursive function example

sum of a list (array)

```
int sum(int a[], int size) { //size is number of elems
    if (size==0)
        return 0;
    else
        return sum(a,size-1) + a[size-1];
}
            call sum on first n-1 elements The last element
For a list with size = 4: }\quad\operatorname{sum}(a,4)
                                    sum(a,3) + a[3] =
                            (sum(a,2) +a[2]) +a[3] =
            ((sum(a,1) +a[1])+a[2])+a[3]=
(((sum(a,0) + a[0]) + a[1]) + a[2]) + a[3] =
    0 +a[0] +a[1] +a[2] +a[3]
```


Recursive function example

count character occurrences in a string

- Write a recursive function to count the number of times a specific character appears in a string
- We will use the string member function substr to make a smaller string:
- string str.substr (int pos, int length);
- Returns a newly constructed string object containing the portion of str that starts at character position pos and spans len characters (or until the end of the string, whichever comes first).
string x = "hello there";
cout \ll x.substr $(0,10) \ll$ endl;
cout \ll x.substr $(1,10) \ll$ endl;
cout $\ll x[4] \ll$ endl;

Recursive function example

 count character occurrences in a string- This example is different from how the book does it.
- I use substr to make a copy of str with the first character removed to make the recursive call on a shorter string.
int numChars(char target, string str) \{
f (str.empty()) \{
return 0;
\} else \{ //make recursive call, then modify the results:
int result $=$ numChars(target, str.substr(1,str.size()-1));
if (str[0]==target)
return 1+result;
else
return result.
\}
$\}$
int main() \{
string a = "hello";
cout << a << " " << numChars('l',a) << endl;
\}

Recursive function example

greatest common divisor

- Code:

```
int gcd(int x, int y) {
    if (x % y == 0) {
        return y;
    } else {
        return gcd(y, x % y);
    }
}
int main() {
    cout << "GCD(9,1): " << gcd(9,1) << endl;
    cout << "GCD(1,9): " << gcd(1,9) << endl;
    cout << "GCD(9,2): " << gcd(9,2) << endl;
    cout << "GCD(70,25): " << gcd(70,25) << endl;
    cout << "GCD(25,70): " << gcd(25,70) << endl;
```

\}

Recursive function example

Fibonacci numbers

- Series of Fibonacci numbers:
$0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots$
- Starts with 0,1. Then each number is the sum of the two previous numbers
$\mathrm{F}_{0}=0$
$\mathrm{F}_{1}=1$
$\mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}-1}+\mathrm{F}_{\mathrm{i}-2} \quad($ for $\mathrm{i}>1)$
- It's a recursive definition

```
int fib(int x) {
    if (x==0 || x==1)
        return x;
    else
        return fib(x-1) + fib(x-2);
```

\}

Recursive functions over linked lists

- Member functions of a linked list class can be defined recursively.

These functions take a pointer to a node in the list as a parameter
They compute the function for the list starting at the node p points to.

- The pattern:
base case: empty list, when p is NULL
- recursive case: assume f works for list starting at $p->n e x t$, what is the answer for the list starting at p ? (it has one more element).

Recursive function example

Fibonacci numbers

- Note: the recursive fibonacci functions works as written, but it is VERY inefficient.
- Counting the recursive calls to fib:

The first 40 fibonacci numbers:
fib (0)= 0 \# of recursive calls to fib $=1$
fib (1)= 1 \# of recursive calls to fib = 1
fib (2)= 1 \# of recursive calls to fib $=3$
fib (3) $=2$ \# of recursive calls to fib $=5$
fib (4)= 3 \# of recursive calls to fib $=9$
fib (5) $=5$ \# of recursive calls to fib $=15$
fib (6)= 8 \# of recursive calls to fib $=25$
fib (7)= 13 \# of recursive calls to fib $=41$
fib (8)=21 \# of recursive calls to fib $=67$
fib (9)= 34 \# of recursive calls to fib $=109$
fib $(40)=102,334,155$ \# of recursive calls to $\mathrm{fib}=331,160,281$

Recursive function example

count the number of nodes in a list

```
class NumberList
    \
    private:
        struct ListNode {
            double value;
            struct ListNode *next;
            };
            ListNode *head;
            int countNodes(ListNode *); //private version, recursive
    public:
            NumberList();
            NumberList(const NumberList & src);
            ~NumberList();
            void appendNode(double);
            void insertNode(double);
            void deleteNode(double);
            void displayList();
            int countNodes();
                                //public version, calls private

\section*{Recursive function example}
count the number of nodes in a list
// the private version, has a pointer parameter
// How many nodes are in the list starting at the pointer?
int NumberList::countNodes(ListNode *p) \{
if ( \(p==\) NULL)
return 0;
else
return \(1+\) countNodes(p->next);
\}
// the public version, no arguments (Nodes are private)
// calls the recursive function starting at head
int NumberList::countNodes() \{
return countNodes(head);
\}

Note that this function is overloaded

\section*{Linked List example:}
- Append \(x\) to the end of a singly linked list:

Pass the node pointer by reference
Recursive
```

void List::append (double x) { Public function
append(x, head).
}
void List::append (double x, Node *\& p) {
if (p == NULL) {
p = new Node;
p->data = x;
p->next = NULL;
}
else
append (x, p->next);

Recursive function example

display the node values in reverse order

```
// the private version, needs a pointer parameter
void NumberList::reverseDisplay(ListNode *p) {
    if (p == NULL) {
        //do nothing
    } else {
        //display the "rest" of the list in reverse order
        reverseDisplay(p->next);
        cout << p->value << " ";
    }
}
// the public version, no arguments
void NumberList::reverseDisplay() {
    reverseDisplay(head);
    cout << endl;
}

\section*{Why use recursion?}
- It is true that recursion is never required to solve a problem
- Any problem that can be solved with recursion can also be solved using iteration.
- Recursion requires extra overhead: function call + return mechanism uses extra resources

\section*{However:}
- Some repetitive problems are more easily and naturally solved with recursion
- the recursive solution is often shorter, more elegant, easier to read and debug.```

