
1

Week 2
Branching & Looping

Gaddis: Chapters 4 & 5

CS 5301
Spring 2018

Jill Seaman

2

Relational Operators
l relational operators (result is bool):

l operator precedence:

== Equal to (do not use =)
!= Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

int x=90;
int n=6;
‣ 7 < 25
‣ 89 == x
‣ x % 2 != 0
‣ 8 + 5 * 10 <=10 * n

* / %
+ -
< > <= >=
== !=
=

int x, y;

... x < y -10 ...

... x * 5 >= y + 10 …

bool t1 = x > 7;
bool t2 = x * 5 >= y + 10;

Which operation happens first? next? …

3

 if/else
l if and else

l if expression is true, statement1 is executed
l if expression is false, statement2 is executed

l the else is optional:
l if expression is true, statement is executed,

otherwise statement is skipped

if (expression)
 statement1
else
 statement2

if (expression)
 statement

double rate, monthlySales;
. . .
if (monthlySales > 3000)
 rate = .025;
else
 rate = .029;

4

Block or compound statement
l a set of statements inside braces: 
 
 

l This allows us to use multiple statements when
by rule only one is allowed.

{
 int x;
 cout << “Enter a value for x: “ << endl;
 cin >> x;
}

int number;
cout << “Enter a number” << endl;
cin >> number;
if (number % 2 == 0)
{
 number = number / 2;
 cout << “0”;
}
else
{
 number = (number + 1) / 2;
 cout << “1”;
}

5

Nested if/else
l if-else is a statement. It can occur as a

statement inside of another if-else statement.

l The braces are optional 
on this side

if (score >= 90)
 grade = 'A';
else {
 if (score >= 80)
 grade = 'B';
 else {
 if (score >= 70)
 grade = 'C';
 else {
 if (score >= 60)
 grade = 'D';
 else
 grade = 'F';
 }
 }
 }

if (score >= 90)
 grade = 'A';
else if (score >= 80)
 grade = 'B';
else if (score >= 70)
 grade = 'C';
else if (score >= 60)
 grade = 'D';
else
 grade = 'F';

This is equivalent to the code on
the left. It is just formatted differently

6

Nested if/else
l if-else is a statement. It can occur as a

statement inside of another if-else statement.

if (score >= 90)
 grade = 'A';
else {
 if (score >= 80)
 grade = 'B';
 else {
 if (score >= 70)
 grade = 'C';
 else {
 if (score >= 60)
 grade = 'D';
 else
 grade = 'F';
 }
 }
 }

if (score >= 90)
 grade = 'A';
else if (score >= 80)
 grade = 'B';
else if (score >= 70)
 grade = 'C';
else if (score >= 60)
 grade = 'D';
else
 grade = 'F';

This is equivalent to the code on
the left. It is just formatted differently

If we are in this
else branch, what
do we know about
the value of score?

7

Nested if/else
l Here is a flowchart indicating the flow of control

during execution of the nested if on the previous
slide: Notice you don’t need

to add “&& score < 90”
here.

8

Logical Operators
l logical operators (values and results are bool):

l operator precedence:

l examples T/F?:

! not
&& and
|| or

int x=6;
int y=10;
a. x == 5 && y <= 3
b. x > 0 && x < 10
c. x == 10 || y == 10
d. x == 10 || x == 11
e. !(x > 0)
f. !(x > 6 || y == 10)

!
* / %
+ -
< > <= >=
== !=
&&
||

 !a
a && b
a || b

is true when a is false
is true when both a and b are true
is true when either a or b is true

9

switch statement
l switch stmt:

- execution starts at the case labeled with the value of
the expression.
- if no match, start at default
- use break to exit switch (usually at end of statements)

l example: switch (ch) {
 case ‘a’:
 case ‘A’: cout << “Option A”;
 break;
 case ‘b’:
 case ‘B’: cout << “Option B”;
 break;
 default: cout << “Invalid choice”;
}

switch (expression) {
 case constant: statements
 ...
 case constant: statements
 default: statements
}

10

Input Validation
l Input validation: inspecting input data to

determine whether it is acceptable
l Invalid input is an error that should be treated as

an exceptional case.
➡ The program can ask the user to re-enter the data
➡ The program can exit with an error message
cout << “Enter a score between 0 and 100: ”;
cin >> score;
if (score < 0 || score > 100) {
 cout << "That is an invalid score.” << endl;
} else {
 //do something with score here
}

11

More assignment statements
l Compound assignment

l increment, decrement

operator usage equivalent syntax:
+= x += e; x = x + e;

-= x -= e; x = x - e;

*= x *= e; x = x * e;

/= x /= e; x = x / e;

operator usage equivalent syntax:

++ x++; ++x; x = x + 1;

-- x--; --x; x = x - 1;

12

while loops
l while

★ if expression is true, statement is executed, repeat
l Example:

l output:

while (expression)
 statement

statement may be a
compound statement
(a block: {statements})

int number;
cout << “Enter a number, 0 when finished: ”;
cin << number;
while (number != 0)
{
 cout << “You entered ” << number << endl;
 cout << “Enter the next number: ”;
 cin >> number;
}
cout << “Done” << endl;

Enter a number, 0 when finished: 22
You entered 22
Enter the next number: 5
You entered 5
Enter the next number: 0
Done

13

two kinds of loops
l conditional loop

★ execute as long as a certain condition is true
l count-controlled loop:

★ executes a specific number of times
- initialize counter to zero (or other start value).
- test counter to make sure it is less than count.
- update counter during each iteration.

int number = 1;
while (number <= 3)
{
 cout << “Student” << number << endl;
 number = number + 1; // or use number++
}
cout << “Done” << endl;

number is a “counter”,
it keeps track of the number of
times the loop has executed.

14

for loops
l for:

★ equivalent to:

l Good for implementing count-controlled loops:

for (expr1; expr2; expr3)
 statement

statement may be a
compound statement
(a block: {statements})

expr1;
while (expr2) {
 statement
 expr3;
}

for (int number = 1; number <= 3; number++)
{
 cout << “Student” << number << endl;
}
cout << “Done” << endl;

pattern: for (initialize; test; update)

15

do-while loops
l do while:

l The test is at the end, statement ALWAYS
executes at least once.

do
 statement
while (expression);

statement may be a
compound statement
(a block: {statements})

statement is executed.
if expression is true, then repeat

int number;
do {
 cout << “Enter a number, 0 when finished: ”;
 cin << number;
 cout << “You entered ” << number << endl;
} while (number != 0);

16

Keeping a running total (summing)
l Example:

int days;
float total = 0.0; //Accumulator

cout << “How many days did you ride your bike? “;
cin >> days;

for (int i = 1; i <= days; i++)
{
 float miles;
 cout << “Enter the miles for day “ << i << “: ”;
 cin >> miles;
 total = total + miles;
}

cout << “Total miles ridden: “ << total << endl;

17

Sentinel controlled loop
l A sentinel controlled loop continues to process

data until reaching a special value (called the
sentinel) that signals the end.

l The first item is retrieved before the loop starts.
This is called the priming read, since it gets the
process started.

l If the first item is the sentinel, the loop
terminates and no data is processed.

get the first data item
while item is not the sentinel
 process the item
 get the next data item

18

Sentinel controlled loop
l Example: summing using a sentinel

float total = 0.0; //Accumulator
float miles;

cout << "Enter the miles you rode (-1 to quit): ";
cin >> miles;

while (miles != -1)
{
 total = total + miles;
 cout << "Enter the miles you rode (-1 to quit): ";
 cin >> miles;
}

cout << "Total miles ridden: " << total << endl;

19

Nested loops
l When one loop appears in the body of another
l For every iteration of the outer loop, we do all

the iterations of the inner loop
for (row=1; row<=3; row++) //outer
{
 for (col=1; col<=3; col++) //inner
 cout << row * col << “ “;
 cout << endl;
}

1 2 3
2 4 6
3 6 9

Output:

20

continue and break Statements
l Use break to terminate execution of a loop
l When used in a nested loop, terminates the

inner loop only.

l Use continue to go to end of current loop and
prepare for next repetition

l while, do-while loops: go immediately to the test,
repeat loop if test passes

l for loop: immediately perform update step, then
test, then repeat loop if test passes

21

Example problem: Future Value
l Money deposited in a bank account earns

interest annually. How much will the account be
worth 10 years from now?

l Inputs: the principal, annual interest rate
l Output: value of the investment in 10 years
l Relationship between Inputs and Outputs: 

Value after one year is given by this formula: 
 principal * (1 + apr).  
This needs to be done 10 times.

22

Example problem: Future Value
l Design:

Print an introduction
Input the amount of the principal (principal)
Input the annual percentage rate (apr)
Repeat 10 times:
 principal = principal * (1 + apr)
Output the value of principal

23

Example problem: Future Value
l Code:
int main() {
 cout << fixed << setprecision(2);
 double principal, apr;
 //Print an introduction
 cout <<"This program calculates the future ";
 cout <<"value of a 10-year investment." << endl;
 //Input the amount of the principal (principal)
 cout << "Enter the initial principal: ";
 cin >> principal;
 //Input the annual percentage rate (apr)
 cout << "Enter the annual interest rate: ";
 cin >> apr;
 //Repeat 10 times:
 for (int i=1; i<=10; i++)
 //principal = principal * (1 + apr)
 principal = principal * (1 + apr);
 //Output the value of principal
 cout << "The value in 10 years is: " << principal << endl;
}

