
1

Inheritance & Polymorphism

Week 7

Gaddis: Chapter 15

CS 5301
Spring 2018

Jill Seaman

2

Inheritance

• A way to create a new class from an existing class
• The new class is a specialized version of the existing

class
• Base class (or parent) – the existing class
• Derived class (or child) – inherits from the base class
• The derived class contains all the members from the

base class (in addition to the ones in the derived class).
class Student {

 . . .

}

class UnderGrad : public Student {

 . . .

}Base class Derived class

3

Access to private members

private members:
 char letter;
 float score;
 void calcGrade();
public members:
 void setScore(float);
 float getScore();
 char getLetter();

class Grade
private members:
 int numQuestions;
 float pointsEach;
 int numMissed;
public members:
 Test(int, int);

class Test : public Grade

When Test class inherits
from Grade class using
public class access, it
looks like this:

private members:
 int numQuestions:
 float pointsEach;
 int numMissed;
public members:
 Test(int, int);
 void setScore(float);
 float getScore();
 float getLetter();

An instance of Test contains letter and score,
but they are not directly accessible from inside
(or outside) the Test member functions. 4

Constructors and Destructors in
Base and Derived Classes

• Derived classes can have their own constructors and
destructors
• When an object of a derived class is created,

1. the base class’s (default) constructor is executed first,
2. followed by the derived class’s constructor

• When an object of a derived class is destroyed,
1. the derived class destructor is called first,
2. then the base class destructor

5

Constructors and Destructors:
example

class BaseClass {
public:
 BaseClass()
 { cout << "This is the BaseClass constructor.\n"; }
 ~BaseClass()
 { cout << "This is the BaseClass destructor.\n"; }
};
class DerivedClass : public BaseClass {
public:
 DerivedClass()
 { cout << "This is the DerivedClass constructor.\n"; }
 ~DerivedClass()
 { cout << "This is the DerivedClass destructor.\n"; }
};
int main() {
 cout << "We will now define a DerivedClass object.\n";
 DerivedClass object;
 cout << "The program is now going to end.\n";
}

We will now define a DerivedClass object.
This is the BaseClass constructor.
This is the DerivedClass constructor.
The program is now going to end.
This is the DerivedClass destructor.
This is the BaseClass destructor.

Output:

6

Passing Arguments to a non-default  
Base Class Constructor

• Allows programmer to choose which base class
constructor is called from the derived class constructor
• Specify arguments to base constructor in the derived

constructor function header:

• You must specify a call to a base class constructor if
base class has no default constructor

//assuming Square is derived from Rectangle:
Rectangle::Rectangle(double w, double len)
 { width = w; length = len; }

Square::Square(int side) : Rectangle(side, side)
{ // code for Square constr goes here, if any }

7

Redefining Base Class Functions
• Redefining function: a function in a derived class that

has the same name and parameter list as a function
in the base class
• Not the same as overloading – with overloading,

parameter lists must be different
• Objects of base class use base class version of

function; objects of derived class use derived class
version of function.
• To call the base class version from the derived class

version, you must prefix the name of the function with
the base class name and the scope resolution
operator: Rectangle::display()

8

Redefining Base Class Functions:
example

class Animal {
 private:
 string species;
 public:
 Animal() { species = "Animal";}
 Animal(string spe)
 { species = spe ;}
 void display()
 {cout << "species " << species; }
};

class Primate: public Animal {
 private:
 int heartCham;
 public:
 Primate() : Animal("Primate") { }
 Primate(int in) : Animal ("Primate")
 { heartCham = in; }
 void display()
 { Animal::display(); //calls base class display()
 cout << ", \n# of heart chambers " << heartCham;
 }
};

int main() {
 Animal jasper; // Animal()
 Primate fred(4); // Primate(int)
 jasper.display(); cout << endl;
 fred.display(); cout << endl;
}

species Animal
species Primate,
of heart chambers 4

Output:

9

Include Guards

• These preprocessor directives prevent the header file
from accidentally being included more than once.
• If you have a base class with 2 derived classes, and

the derived classes are both included in a driver . . .

#ifndef RECTANGLE_H
#define RECTANGLE_H
class Rectangle
{
 private:
 double width;
 double length;
 public:
 void setWidth(double);
 void setLength(double);
 double getWidth() const;
 double getLength() const;
 double getArea() const;
};
#endif

Rectangle.h

10

Polymorphism
l The Greek word poly means many, and the

Greek word morphism means form.
l So, polymorphism means 'many forms'.
l In object-oriented programming (OOP),

polymorphism refers to
- identically named (and redefined) functions
- that have different behavior depending on the

(specific derived) type of object that they are called
on.

11

Example of polymorphism?
void f (Animal a) {
 a.speak();
}

int main() {
 Cat c;
 Dog d;
 f(c);
 f(d);
}

l IF the output is “meow bark”, yes, polymorphism.
- The behavior of a in f would depend on its specific

(derived) type.
l IF the output is “none none”, no it’s not.

class Animal {
 private:
 ...
 public:
 void speak() { cout << “none ”; }
};
class Cat : public Animal {
 private:
 ...
 public:
 void speak() { cout << “meow “; }
};
class Dog : public Animal {
 private:
 ...
 public:
 void speak() { cout << “bark “; }
};

12

Polymorphism in C++

l Polymorphism in C++ is supported through:
- virtual functions AND
- pointers to objects OR reference parameters.

l without these, C++ determines which function to
invoke at compile time (using the variable type).

l when virtual functions and pointer/references are
used together, C++ determines which function to
invoke at run time (using the specific type of the
instance currently referenced by the variable).

13

Virtual functions

l Virtual member function: function in a base class
that expects to be redefined in derived class

l Function defined with key word virtual:

l Supports dynamic binding: functions bound at
run time to function that they call

l Without virtual member functions, C++ uses
static (compile time) binding

virtual void Y() {...}

14

Example virtual functions

class Animal {
 public:
 virtual void speak();
 int age();
};
class Cat : public Animal
{
 public:
 virtual void speak(); //redefining a virtual
 int age(); //redefining a normal function
};
int main()
{
 Cat morris;
 Animal *pA = &morris; //using a pointer to get dynamic binding
 pA -> age(); // Animal::age() is invoked (base) (not virtual)
 pA -> speak(); // Cat::speak() is invoked (derived)
...
}

15

Virtual functions

l In compile-time binding, the data type of the
pointer resolves which function is invoked.

l In run-time binding, the type of the object
pointed to resolves which function is invoked.

void f (Animal &a) {
 a.speak();
}

int main() {
 Cat c;
 Dog d;
 f(c);
 f(d);
}

l Assuming speak is virtual,
since a is passed by
reference, the output is:

meow bark

16

Heterogeneous Array version 1:
class COne {
 public:
 void vWhoAmI() { cout << "I am One" << endl; }
};
class CTwo : public COne {
 public:
 void vWhoAmI() { cout << "I am Two" << endl; }
};
class CThree : public CTwo {
 public:
 void vWhoAmI() { cout << "I am Three" << endl; }
};

int main() {
{
 (COne *)apCOne[3] = { new COne, new CTwo, new CThree };
 for (int i = 0; i < 3; i++)
 apCOne[i] -> vWhoAmI();
}

I am One
I am One
I am One

Output:

17

Heterogeneous Array version 2:
class COne {
 public:
 virtual void vWhoAmI() { cout << "I am One" << endl; }
};
class CTwo : public COne {
 public:
 void vWhoAmI() { cout << "I am Two" << endl; }
};
class CThree : public CTwo {
 public:
 void vWhoAmI() { cout << "I am Three" << endl; }
};

int main() {
{
 COne *apCOne[3] = { new COne, new CTwo, new CThree };
 for (int i = 0; i < 3; i++)
 apCOne[i] -> vWhoAmI();
}

I am One
I am Two
I am Three

Output:
18

Abstract classes and
Pure virtual functions

• Pure virtual function: a virtual member function
that must be overridden in a derived class.

• The = 0 indicates a pure virtual function
• Must have no function definition in the base

class.

virtual void Y() = 0;

19

Abstract classes and
Pure virtual functions

• Abstract base class: a class that can have no
objects (instances).
• Serves as a basis for derived classes that will

have objects
• A class becomes an abstract base class when

one or more of its member functions is a pure
virtual function.

20

Example: Abstract Class

l An abstract class may not be used as an
argument type, as a function return type,or as
the type of an explicit conversion.

l Pointers and references to an abstract class
may be declared.

class CShape {
 public:
 CShape () { }
 virtual void vDraw () const = 0; // pure virtual function
};

CShape CShape1; // Error: object of abstract class
CShape* pCShape; // Ok
CShape CShapeFun(); // Error: return type
void vg(CShape); // Error: argument type

21

Example: Abstract Class
l Pure virtual functions are inherited as pure

virtual functions.

l Or else:

class CAbstractCircle : public CShape {
 private:
 int m_iRadius;
 public:
 void vRotate (int) {}
 // CAbstractCircle ::vDraw() is a pure virtual function
};

class CCircle : public CShape {
 private:
 int m_iRadius;
 public:
 void vRotate (int) {}
 void vDraw(); //define here or in impl file
};

22

Heterogeneous collection:
abstract base class

class Animal {
 private:
 string name;
 public:
 Animal(string n) {name = n;}
 virtual void speak() = 0;
};
class Cat : public Animal {
 public:
 Cat(string n) : Animal(n) { };
 void speak() {cout << "meow "; }
};
class Dog : public Animal {
 public:
 Dog(string n) : Animal(n) { };
 void speak() {cout << "bark "; }
};
class Pig : public Animal {
 public:
 Pig(string n) : Animal(n) { };
 void speak() {cout << "oink "; }
};

int main()
{
 Animal* animals[] = {
 new Cat("Charlie"),
 new Cat("Scamp"),
 new Dog("Penny"),
 new Cat("Libby"),
 new Cat("Patches"),
 new Dog("Milo"),
 new Pig("Wilbur") };

 for (int i=0; i< 7; i++) {
 animals[i]->speak();
 }
}

meow meow bark meow meow bark oink
Output:

