
1

Linked Lists

Week 8

Gaddis: Chapter 17

CS 5301
Spring 2018

Jill Seaman

2

Introduction to Linked Lists
l A data structure representing a list
l A series of dynamically allocated nodes

chained together in sequence
- Each node points to one other node.

l A separate pointer (the head) points to the first
item in the list.

l The last element points to nothing (NULL)
NULL

head

3

Node Organization
l Each node contains:
- data field – may be a structure, an object, etc.
- a pointer – that can point to another node

l We use a struct to define the node type:

l next can hold the address of a ListNode.
- it can also be NULL

data
pointer

struct ListNode {
 double value;
 ListNode *next;
};

4

Defining the Linked List variable

l Define a pointer for the head of the list:

l Now we have an empty linked list:

l NULL is equivalent to address 0
l to test a pointer for NULL (these are equivalent):

cout << “Name” << name1 << endl;

ListNode *head = NULL; //NULL specifies end of list

static int getObjectCount();

NULLhead

while (p) ... <==> while (p != NULL) …

if (!p) ... <==> if (p == NULL) ...

Note: If you try to dereference a pointer whose value is NULL, you will get a
runtime error. For example: head->next Check before you do this.

5

Linked List operations

l Basic operations:
- create a new, empty list
- append a node to the end of the list
- insert a node within the list
- delete a node
- display the linked list
- delete/destroy the list

cout << “Name” << name1 << endl;

static int getObjectCount();

6

Linked List class declaration

l
#include <cstddef> // for NULL
using namespace std;

class NumberList
{
 private:
 struct ListNode // the node data type
 {
 double value; // data
 ListNode *next; // ptr to next node
 };
 ListNode *head; // the list head

 public:
 NumberList() = { head = NULL; } //create empty list
 ~NumberList();

 void appendNode(double);
 void insertNode(double);
 void deleteNode(double);
 void displayList();
};

cout << “Name” << name1 << endl;

7

l appendNode: adds new node to end of list
l Algorithm: 
 

cout << “Name” << name1 << endl;

Create a new node and store the data in it
If the list has no nodes (it’s empty)
 Make head point to the new node.
Else
 Find the last node in the list
 Make the last node point to the new node

When defining list operations, always consider special cases:
• Empty list
• First element, front of the list (when head pointer is involved)

Operation:
append node to end of list

8

l How to find the last node in the list?
l Algorithm:

l In C++: 
 

cout << “Name” << name1 << endl;

Make a pointer p point to the first element
while the node p points to has a NEXT node
 make p point to that node (the NEXT node of
 the node p currently points to)

ListNode *p = head;
while ((*p).next != NULL)
 p = (*p).next;

ListNode *p = head;

ListNode *p = head;
while (p->next)
 p = p->next;

<==>

p=p->next is like i++

appendNode: find last elem

9

cout << “Name” << name1 << endl;

void NumberList::appendNode(double num) {

 ListNode *newNode; // To point to the new node

 // Create a new node and store the data in it
 newNode = new ListNode;
 newNode->value = num;
 newNode->next = NULL;

 // If empty, make head point to new node
 if (head==NULL)
 head = newNode;

 else {
 ListNode *p; // To move through the list
 p = head; // initialize to start of list

 // traverse list to find last node
 while (p->next) //it’s not last
 p = p->next; //make it pt to next

 // now p pts to last node
 // make last node point to newNode
 p->next = newNode;
 }
} 10

Traversing a Linked List

l Visit each node in a linked list, to
- display contents, sum data, test data, etc.

l Basic process:

cout << “Name” << name1 << endl;

set a pointer to point to what head points to
while pointer is not NULL
 process data of current node
 go to the next node by setting the pointer to
 the next field of the current node
end while

11

void NumberList::displayList() {
 ListNode *p; //ptr to traverse the list

 // start p at the head of the list
 p = head;

 // while p pts to something (not NULL), continue
 while (p) {
 //Display the value in the current node
 cout << p->value << “ “;

 //Move to the next node
 p = p->next;
 }
 cout << endl;
}

cout << “Name” << name1 << endl;

void NumberList::displayList() {
 for (ListNode *p = head; p; p = p->next)
 cout << p->value << “ “;
 cout << endl;
}

Or the short version:

Operation: display the list

12

Destroying a Linked List: destructor
l The destructor must “delete” (deallocate) all

nodes used in the list
l To do this, use list traversal to visit each node:

- save the address of the next node in a pointer
- delete the node

cout << “Name” << name1 << endl;

NumberList::~NumberList() {
 ListNode *p; // traversal ptr
 ListNode *n; // saves the next node

 p = head; //start at head of list
 while (p) {
 n = p->next; // save the next
 delete p; // delete current
 p = n; // advance ptr
 }
}

13

l deleteNode: removes node from list, and deletes
(deallocates) the removed node.

l Requires two extra pointers:
- one to point to the node to be deleted
- one to point to the node before the node to be

deleted. 
 

cout << “Name” << name1 << endl;

NULL

head

5 13 19

pn

Deleting 13 from the list

Operation:
delete a node from the list

14

Deleting a node
l Change the pointer of the previous node to point

to the node after the one to be deleted.
l Then just “delete” the p node

n->next = p->next;
delete p;

NULL

head

5 19

pn

15

Delete Node Algorithm

l Delete the node containing num

cout << “Name” << name1 << endl;

use p to traverse the list, until it points to num or NULL
--as p is advancing, make n point to the node before it

if (p is not NULL) //found!
 if (p==head) //it’s the first node, and n is garbage
 make head point to the second element
 delete p’s node (the first node)
 else
 make n’s node point to what p’s node points to
 delete p’s node
else: . . . p is NULL, not found do nothing 16

Linked List functions: deleteNode
void NumberList::deleteNode(double num) {

 ListNode *p = head; // to traverse the list
 ListNode *n; // trailing node pointer (previous)

 // skip nodes not equal to num, stop at last
 while (p && p->value!=num) {
 n = p; // save it!
 p = p->next; // advance it
 }

 // p not null: num is found, set links + delete
 if (p) {
 if (p==head) { // p points to the first elem, n is garb
 head = p->next;
 delete p;
 } else { // n points to the predecessor
 n->next = p->next;
 delete p;
 }
 }
}

cout << “Name” << name1 << endl;

17

Operation:
insert a node into a linked list

l Inserts a new node into the middle of a list.
l Uses two extra pointers:
- one to point to node before the insertion point
- one to point to the node after the insertion point 

[this one is optional]

NULL

head

5 13 19

newNode

17 NULL

pn

18

Inserting a Node into a Linked List
l Insertion completed:

NULL

head

5 13 19

newNode

17

pnn->next = newNode;
newNode->next = p;

19

Insert Node Algorithm
l Insert node in a certain position

cout << “Name” << name1 << endl;

Create the new node, store the data in it
Use pointer p to traverse the list,
 until it points to: node after insertion point or NULL
 --as p is advancing, make n point to the node before
 if p points to first node (p is head, n was not set)
 make head point to new node
 make new node point to p’s node
 else
 make n’s node point to new node
 make new node point to p’s node
 Note: we will assume our list is sorted, so the insertion point is immediately
before the first node that is larger than the number being inserted. 20

cout << “Name” << name1 << endl;

What if num is bigger than
all items in the list?

insertNode code
void NumberList::insertNode(double num) {
 ListNode *newNode; // ptr to new node
 ListNode *p; // ptr to traverse list
 ListNode *n; // node previous to p

 //allocate new node
 newNode = new ListNode;
 newNode->value = num;

 // skip all nodes less than num
 p = head;
 while (p && p->value < num) {
 n = p; // save
 p = p->next; // advance
 }

 if (p == head) { //insert before first, or empty list
 head = newNode;
 newNode->next = p;
 }
 else { //insert after n
 n->next = newNode;
 newNode->next = p;
 }
}

21

Linked List variations
l Doubly linked list
- each node has two pointers, one to the next node

and one to the previous node
- head points to first element, tail points to last.

cout << “Name” << name1 << endl;

NULL

head

5 13 19

NULL

private:
 // Structure for nodes
 struct Node {
 int value; // Value in the node
 Node *prev; // Pointer to the previous node
 Node *next; // Pointer to the next node
 };
 Node *head; // Pointer to the first element
 Node *tail; // Pointer to the last element

tail

22

Linked List variations
l Circular linked list
- last cell’s next pointer points to the first element.
- no null pointers
- every node has a successor

cout << “Name” << name1 << endl;

list
head

5 13 19

23

Linked lists vs Arrays
(pros and cons)

l A linked list can easily grow or shrink in size.
- No maximum capacity required
- No need to resize+copy when list reaches max size.

l When a value is inserted into or deleted from a
linked list, no other nodes have to be moved.

l Arrays allow random access to elements: array[i]
(linked lists require traversal to get i’th element).

l Arrays do not require extra storage for
“links” (linked lists are impractical when the
pointer value is bigger than data value).

cout << “Name” << name1 << endl;

