
1

Basic C++
(What you should already know)

Chapters 1-5

CS 2308
Fall 2018

Jill Seaman

2

Structure of a C++ Program
l Hello world:

l In general:
//This is a comment
#include <includefile> ...
using namespace std;

int main() {
 statements ...
}

//This program outputs a message to the screen
#include <iostream>
using namespace std;

int main() {
 cout << “Hello world!” << endl;
}

3

Variables, Data Types
l Variable: portion of memory that stores a value
l Identifier: name of a program element
l Fundamental data types 

l Variable Declaration statement

l Variable Initialization statement:

datatype identifier;

datatype identifier = constant;

float hours;

int count = 0;

char
short
int
long

float
double
long double

bool
char

short
int
long

4

Constants
l Literals (specific value of a given type)

l Named Constants: 
variable whose value cannot be changed

1
75
-2

true
false

12.45
-3.8
6.25e-5

‘A’
‘2’

const datatype identifier = constant;

const double TAX_RATE = 0.0675;

5

Assignment statement, expressions
l To change the value of a variable:

✴ The lefthand side must be a variable
✴ The righthand side is an expression of the right type

l What is an expression?
✴ an expression has a type and evaluates to a value

✦ literal
✦ named constant
✦ variable
✦ arithmetic expression
✦ etc.

variable = expression; count = 10;

6

Arithmetic and Relational Operations
l arithmetic operators:

l relational operators (result is bool):

+ addition
- subtraction
* multiplication
/ division
% modulo

x + 10
7 % 2
8 + 5 * 10

== Equal to
!= Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

7 < 25
89 == x
x % 2 != 0
8 + 5 * 10 <=100 * n

Watchout: Integer division!!

7

Logical Operations, precedence
l logical operators (values and results are bool):

l operator precedence (which happens first?):

! not
&& and
|| or

x < 10 && x > 0
y == 10 || y == 20
!(a == b)

!
+ - (unary)
* / %
+ - (binary)
< > <= >=
== !=
&&
||

!(y == 10) || y == 20 && x > 3 * z

8

More assignment statements
l Compound assignment

l increment, decrement

operator usage equivalent syntax:
+= x += e; x = x + e;

-= x -= e; x = x - e;

*= x *= e; x = x * e;

/= x /= e; x = x / e;

operator usage equivalent syntax:

++ x++; ++x; x = x + 1;

-- x--; --x; x = x - 1;

9

Type conversions
l Implicit
- assignment:

- binary operations:

l Explicit

int x;
double d = 3.1415;
x = d;
cout << x << endl;

int x, y;
...
float avg = static_cast<float>(x)/y;

float avg = x/(float)y; //c-style notation
or

int x = 10;
double d = 2.3;
cout << x + d << endl;

the operand with the lower ranking type
is converted to the type of the other.

the type of expression on the
right will be converted to type
of variable on left, possibly
losing information.

double
float
long
int
char

Order of types:

10

Basic Input/Output
l Output (cout and <<)

l Input (cin and >>)

cout << expression;
cout << expr1 << expr2;

cout << “hello”;
cout << “Count is: “ << count << endl;

cin >> variable;
cin >> var1 >> var2;

cin >> x;
cout << “Enter the height and width: “;
cin >> height >> width;

right hand side must be a variable!

11

Control structures: if else
l if and else

l if expression is true, statement1 is executed
l if expression is false, statement2 is executed

l the else is optional:
l nested if else

if (expression)
 statement1
else
 statement2

if (expression)
 statement

if (expression1)
 statement1
else if (expression2)
 statement2
else if (expression3)
 statement3
else
 statement4

statement may be a
compound statement
(a block: {statements})

12

Control structures: loops
l while

★ if expression is true, statement is executed, repeat
l for:

★ equivalent to:

l do while:

while (expression)
 statement

for (expr1; expr2; expr3)
 statement

do
 statement
while (expression);

statement may be a
compound statement
(a block: {statements})

expr1;
while (expr2) {
 statement
 expr3;
}

statement is executed.
if expression is true, then repeat

13

Control structures: switch
l switch stmt:

- execution starts at the case labeled with the value of
the expression.
- if no match, start at default
- use break to exit switch (usually at end of statements)

l example: switch (ch) {
 case ‘a’:
 case ‘A’: cout << “Option A”;
 break;
 case ‘b’:
 case ‘B’: cout << “Option B”;
 break;
 default: cout << “Invalid choice”;
}

switch (expression) {
 case constant: statements
 ...
 case constant: statements
 default: statements
}

14

The string class

l string literals: represent sequences of chars:

l To define string variables:

l Operations include:
- = for assignment
- .size() member function for length
- ==, <, ... relational operators (alphabetical order)
- [n] to access one character

cout << “Hello”;

string firstName, lastName;

string name = “George”;
for (int i=0; i<name.size(); i++)
 cout << name[i] << “ “;

15

File Input/Output
l #include <fstream>
l Output (ofstream)

l Input (ifstream)

ofstream fout;
fout.open(“filename.txt”);
fout << “hello”;
fout << “Count is: “ << count << endl;
fout.close();

ifstream fin;
fin.open(“data.txt”);
if (!fin) {
 cout << “error opening file” << endl;
 return (0);
}
int x;
fin >> x;
cout << “x is “ << x << endl;
fin.close();

right hand side must be a variable!

Check for file open errors

