
!1

Ch 14.4: Copy Constructors

CS 2308
Fall 2018

Jill Seaman

!2

14.4 Copy Constructors

! Special constructor used when a newly created
object is initialized using another object of the
same class.

! The default copy constructor (provided by the
c++ compiler) copies values of member variables
to corresponding member variables.

! Default copy constructor works fine in most
cases

Time t1;
Time t2 (t1);
Time t3 = t1;

Both of the last two
use the copy constructor

!3

IntCell declaration

! Problem: what if the object contains a pointer?

class IntCell
{
 private:
 int *storedValue; //ptr to int

 public:
 IntCell (int initialValue);
 ~IntCell();
 int read () const;
 void write (int x);
};

!4

IntCell Implementation

#include “IntCell.h”

IntCell::IntCell (int initialValue) {
 storedValue = new int;
 *storedValue = initialValue;
}

IntCell::~IntCell() {
 delete storedValue;
}

int IntCell::read () const {
 return *storedValue;
}

void IntCell::write (int x) {
 *storedValue = x;
}

!5

Problem with member to member
copying

! What we get from member to member copying in
objects containing dynamic memory (ptrs):

IntCell object1(5);
IntCell object2 = object1; // calls copy constructor

 //object2.storedValue=object1.storedValue

object2.write(13);
cout << object1.read() << endl;
cout << object2.read() << endl;

What is output? 5
13 or

13
13

!6

Problem with member to member
copying

! Why are they both changed to 13?
! Member-wise copying does a shallow copy. It

copies the pointer’s address instead of allocating
new memory and copying the value.

! As a result, both objects point to the same
location in memory

object1 object2

storedValue storedValue

13

!7

Programmer-Defined  
Copy Constructor

! Prototype and definition of copy constructor:

! Copy constructor takes a reference parameter to
an object of the class
- otherwise, pass-by-value would use the copy

constructor to initialize the obj parameter, which
would call the copy constructor: this is an infinite loop

IntCell::IntCell(const IntCell &obj) {
 storedValue = new int;
 *storedValue = obj.read();
}

IntCell(const IntCell &obj); Add to class declaration

!8

Programmer-Defined  
Copy Constructor

! Each object now points to separate dynamic
memory:

IntCell object1(5);
IntCell object2 = object1; //now calls MY copy constr

object2.write(13);
cout << object1.read() << endl;
cout << object2.read() << endl;

object1 object2

storedValue

135

5
13

Output:

storedValue

