List ADT:

Linked lists vs. Arrays

CS 2308
Fall 2018

Jill Seaman

— —

Abstract Data Type
A data type for which:

only the properties of the data and the operations to
be performed on the data are specific,

how the data will be represented or how the
operations will be implemented is unspecified.

An ADT may be implemented using various
specific data types or data structures, in many
ways and in many programming languages.

Examples:

Stacks and Queues (implemented using arrays+LL)
string class (not sure how it's implemented) -

The Abstract List Data Type

A List is an ordered collection of items of some
type T:

each element has a position in the list
duplicate elements are allowed

List is not a C++ data type. It is conceptual. It
can be implemented in various ways

We have implemented it using a linked list
(NumberList).

Now we are going to use an array to implement
the list. 3

Common List operations

Basic operations over a list:
create a new, empty list
append a value to the end of the list
insert a value within the list
delete a value (remove it from the list)
display the values in the list

delete/destroy the list
(if it was dynamically allocated)

[(.

Declaring the List data type NumberList class declaration

class NumberList Lﬂggﬂfigﬁgl
We will be defining a class called NumberList to U private:
represent a L|St data type static const int SIZE = 100;

double array[SIZE];
. . int count;

ours will store values of type double, using an array.

public:

The class will implement the basic operations NumberList(); // creates an empty list _
. . . // ~NumberList(); // not needed, no dynamic allocation
over lists on the previous slide.
void appendNode(double);

In the private section of the class we will: void insertNode(double);

void deleteNode(double);
void displayList();

define an array of double to store the elements in }i
the list. _ o _
define a count variable that keeps track of how This has the same public interface as it does when

many elements are currently in the list. 5 using linked lists. 6

Operation: Operation:
Create the empty list append value to end of list
Constructor: sets up empty list appendNode: adds new value to end of list

Algorithm: Make sure the list isn't full.
Put new element in array at position count.
Increment count.

#include "NumberList.h" NumberList.cpp
NumberList: :NumberList() void NumberList::appendNode(double num) { in NumberList.cpp
{ count = 0 if (count < SIZE) {
! array[count] = num;
} count++;
} else
cout << "Error: cannot append value, list is full"

<< endl;
//maybe we should add isFull/isEmpty?

—

Operation: display the list

Use a for loop
Stop at count, not SIZE

void NumberList::displayList() { in NumberList.cpp

for (int i=0; i<count; i++) {
cout << array[i] << " ";

cout << endl;

| Operation:

delete a node from the list
deleteNode: removes a given value from list
We need to shift elements over to fill the gap.

’ Deleting 13 from the Iist‘

deleteNode code

void NumberList::deleteNode(double num) { |in NumberList.cpp

int i=0;

while (i<count && array[i]!=num) {
i++;

}

if (i<count) { //found at i
count--;

//shift left to close gap
while (i<count) {
array[i] = array[i+l];
i++;

}

1 4 7 113|171 25 count=6
NAY
1 4 7 17|25 |25 count=5
10
Operation:

insert a value into a list

Inserts a new value into the middle of a list.

We’ll assume the list is sorted, and insert before
first number greater than this value.

We need to shift elements over to produce a gap.
[Inserting 15 into the list |

1 4 7 113|117 |25 count =6

1 4 7 |13 [15|17 |25 count =7

iInsertNode code

void NumberList::insertNode(double num) { in NumberList.cpp

//keep the list sorted

int i=0;

while (i<count && array[i]<num) {
i++;

}

count++;

//shift right to open up a spot in the array
int j= count-1;
while (j>i) {
array[jl=array[j-1];
J--i
}

array[i] = num;

—

Driver to demo NumberList

in ListDriver.cpp This is the same Driver we used for the
int main() { Linked List-based NumberList.
We should confirm that we get the

// set up the list same exact output for this array-based

NumberList list; implementation.

list.appendNode(2.5);

list.appendNode(7.9);

list.appendNode(12.6); Output:

list.displayList(); 2.5 7.9 12.6

. 2.5 7.9 8.5 12.6

list.insertNode (8.5); 1.5 2.5 7.9 8.5 12.6

list.displayList(); 1.5 2.5 7.9 8.5 12.6 21

list.insertNode (1.5);

list.displayList();

list.insertNode (21.5);

list.displayList();
//continued on next slide 14

Driver to demo NumberList
in ListDriver.cpp

cout << "remove 7.9:" << endl;
list.deleteNode(7.9);
list.displayList();

cout << "remove 8.9: " << endl;
list.deleteNode(8.9);
list.displayList();

remove 7.9:

cout << "remove 2.5: " << endl; 1.5 2.5 8.5 12.6 21.5

list.deleteNode(2.5);

list.displayList(); remove 8.9:

cout <<'"remove 12.6: " << endl; 1.52.5 8.5 12.6 21.5

list.deleteNode(12.6);

list.displayList(); remove 2.5:

1.5 8.5 12.6 21.5

remove 12.6:
1.5 8.5 21.5

linked lists vs arrays: space issues

Linked list is never full (if there’s more memory)
For arrays we need to predict the largest possible size.
The amount of memory used to store the linked

list version is always proportional to the number
of elements in the list (it grows+shrinks)

For arrays, the amount of memory used is often much
more than is required by the actual elements in the list.

Arrays do not require extra storage for links

linked lists are impractical for lists of characters or
booleans (pointer value is bigger than data value?é

— I

iInked lists vs arrays: time issues

When a value is inserted into or deleted from a

linked list, none of the other nodes have to be
moved.

Array elements must be shifted to make room or
close a gap.

Arrays allow random access to elements: array]i]
for arrays this is pointer arithmetic
linked lists must be traversed to get to i'th element.

17

