—_— — - — - -

Introduction to Recursion | What is recursion?

* Generally, when something
contains a reference to itself

* Math: defining a function in terms
of itself

Chapter 20.1-4

« Computer science: when a

CS 2308 function calls itself:

Fall 2018

Jill Seaman

}

}

void message() {
cout << “This is a recursive function.\n”;

message();

int main() {

message();

What happens when this is executed?

* Infinite Recursion:

How can a function call itself?

Note: If you encounter infinite recursion in Lab, be sure
to STOP your program BEFORE running it again!!!

Recursive message() modified

* How about this one?

This is a recursive function. . .

This is a recursive function. V01§ message(int n) {

This is a recursive function. if (n > 0) {
This is a recursive function. cout << “This is a recursive function.\n”;
This is a recursive function. message(n-1);

This is a recursive function. }

This is a recursive function. }

This is a recursive function. int main() {

This is a recursive function. message(5);

This is a recursive function. }

This is a recursive function.

6 nested calls to message:

message(5):
outputs “This is a recursive function”
calls message(4):
outputs “This is a recursive function”
calls message(3):
outputs “This is a recursive function”
calls message(2):
outputs “This is a recursive function”
calls message(l):
outputs “This is a recursive function”
calls message(0):
does nothing, just returns

Tracing the calls

depth of recursion (#times it calls itself) = 5:

|

Recursive function example

factorial

Mathematical definition of n! (factorial of n)

1
1 x2x3 X ...

if n=0 then n!
if n>0 then n!

Xx n-1 X n

What is the base case?
n=0 (the resultis 1)

Recursive case: If we assume (n-1)! can be
computed, how can we get n! from that?

n'=n*(n-1)!

[e

ow to write recursive functions

Branching is required (If or switch)

Find a base case

one (or more) values for which the result of the
function is known (no repetition required to solve it)

no recursive call is allowed here
Develop the recursive case

For a given argument (say n), assume the function
works for a smaller value (n-1).

Use the result of calling the function on n-1 to form a

solution for n .

\

Recursive function example
factorial

int factorial(int n) {
if (n==0)
return 1;
else
return n * factorial(n-1);

int main() {
int number;
cout << “Enter a number “;
cin >> number;
cout << “The factorial of “ << number << “ is *“
<< factorial (number) << endl;

— I

Tracing the calls

Calls to factorial:

factorial(4):

return 4 * factorial(3); =4*6 =24
calls factorial(3):
return 3 * factorial(2); =3*2=6
calls factorial(2): \\
return 2 * factorial(l); =2*1=2

calls factorial(l):
return 1 * factorial(0); =1*1=1

calls faCto#iiiigli//’/////)
return 1;
Every call except the last makes a recursive call
Each call makes the argument smaller

N

Recursive function example
sum of the list

Recursive function to compute sum of a list of
numbers
What is the base case?

length=0 (empty list) =>sum =0

If we assume we can sum the first n-1 items in
the list, how can we get the sum of the whole list
from that?

sum (list) = sum (list[0]..list[n-2]) + list[n-1]

Assume | am given the answer to this

| Recursive functions: ints and lists

Recursive functions over integers follow this
pattern:

type f(int n) {
if (n==0)
//do the base case
else
// ... £f(n-1) ...

}

Recursive functions over lists (arrays, linked lists,
strings) use the length of the list in place of n

base case: if (length==0) ... // empty list

recursive case: assume f works for list of length n-1,
compute the answer for a list with one more element.

\

Recursive function example
sum of a list (array)

int sum(int a[], int size) { //size is number of elems
if (size==0)
return 0;
else
return sum(a,size-1) + a[size-1];

call sum on first n-1 elements The last element

For a list with size = 4: sum(a,4) =
sum(a,3) + a[3] =
(sum(a,2) + a[2]) + a[3] =
((sum(a,l) + a[l]) + a[2]) + a[3] =
(((sum(a,0) + a[0]) + a[l]) + a[2]) + a[3] =
0 + a[0] + a[l] + a[2] + a[3]

| Recursive function example

greatest common divisor

evenly (without a remainder)
* This is a variant of Euclid’s algorithm:

y if x/y has no remainder otherwise:
gcd(y,remainder of x/y)

gcd(x,Y)
gcd(x,Y)

elsewhere.

N

* Greatest common divisor of two non-zero ints is the
largest positive integer that divides the numbers

* It's a recursive definition, correctness is proven

Recursive function example

greatest common divisor
» Code:

int ged(int x, int y) {
if (x 8y == 0) {
return y;
} else {
return gcd(y, x % y);

}

}

int main() {
cout << "GCD(9,1): " << gcd(9,1) << endl;
cout << "GCD(1,9): " << gecd(1l,9) << endl;
cout << "GCD(9,2): " << gcd(9,2) << endl;
cout << "GCD(70,25): " << gecd(70,25) << endl;
cout << "GCD(25,70): " << gecd(25,70) << endl;

Recursive function example

Fibonacci numbers

« Series of Fibonacci numbers:
o, 1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

the two previous numbers

Fo =0
F, =1
Fi = Fi-1 + Fi» (for i > 1)

¢ |t's a recursive definition

int fib(int x) {
if (x==0 || x==1)
return x;
else
return fib(x-1) + fib(x-2);

» Starts with 0, 1. Then each number is the sum of

\

Recursive function example

Fibonacci numbers

* Note: the recursive fibonacci functions works as
written, but it is VERY inefficient.

« Counting the recursive calls to fib:

The first 40 fibonacci numbers:

fib (0)= 0 # of recursive calls to fib =1
fib (1)= 1 # of recursive calls to fib =1
fib (2)= 1 # of recursive calls to fib = 3
fib (3)= 2 # of recursive calls to fib = 5
fib (4)= 3 # of recursive calls to fib = 9
fib (5)= 5 # of recursive calls to fib = 15
fib (6)= 8 # of recursive calls to fib = 25

fib (7)= 13 # of recursive calls to fib = 41
fib (8)= 21 # of recursive calls to fib 67
fib (9)= 34 # of recursive calls to fib 109

“en 16
fib (40)= 102,334,155 # of recursive calls to fib = 331,160,281

