Introduction to Recursion

Chapter 20.1-4

CS 2308
Fall 2018
Jill Seaman

What is recursion?

- Generally, when something contains a reference to itself
- Math: defining a function in terms of itself
- Computer science: when a function calls itself:
void message() \{
cout << "This
cout << "This is a recursive function. $\backslash n " ;$ message();
\}
int main() \{
message();

Recursive message() modified

- How about this one?

```
```

void message(int n) {

```
```

void message(int n) {
if (n > 0) {
if (n > 0) {
cout << "This is a recursive function.\n";
cout << "This is a recursive function.\n";
message(n-1);
message(n-1);
}
}
}
}
int main() {
int main() {
message(5);
message(5);
}

```
```

}

```
```


How can a function call itself?

- Infinite Recursion:
This is a recursive function.

Note: If you encounter infinite recursion in Lab, be sure to STOP your program BEFORE running it again!!!

Tracing the calls

- 6 nested calls to message:
message(5):
outputs "This is a recursive function"
calls message(4):
outputs "This is a recursive function" calls message(3):
outputs "This is a recursive function" calls message(2):
outputs "This is a recursive function" calls message(1):
outputs "This is a recursive function" calls message(0):
does nothing, just returns
- depth of recursion (\#times it calls itself) $=5$.

Recursive function example

 factorial- Mathematical definition of n ! (factorial of n)

```
if n=0 then n! = 1
if n>0 then n! = 1 x 2 x 3 x ... x n-1 x n
```

- What is the base case?
- $\mathrm{n}=0$ (the result is 1)
- Recursive case: If we assume ($\mathrm{n}-1$)! can be computed, how can we get n ! from that?
$-n!=n$ * $(n-1)$!

How to write recursive functions

- Branching is required (If or switch)
- Find a base case
one (or more) values for which the result of the function is known (no repetition required to solve it)
no recursive call is allowed here
- Develop the recursive case
- For a given argument (say n), assume the function works for a smaller value ($n-1$).
- Use the result of calling the function on $\mathrm{n}-1$ to form a solution for n

Recursive function example

factorial

```
int factorial(int n) {
    if (n==0)
        return 1;
    else
        return n * factorial(n-1);
}
int main() {
    int number;
    cout << "Enter a number ";
    Cin >> number;
    cout << "The factorial of " << number << " is "
        << factorial(number) << endl;
```

\}

Tracing the calls

- Calls to factorial:

```
factorial(4):
    return 4 * factorial(3); =4 * 6 = 24
    calls factorial(3):
        return 3 * factorial(2); =3*2=6
        calls factorial(2):
            return 2 * factorial(1); =2* 1=2
            calls factorial(1):
                return 1 * factorial(0); =1*1=1
            calls factorial(0):
                return 1;
```

- Every call except the last makes a recursive call
- Each call makes the argument smaller

Recursive function example

sum of the list

- Recursive function to compute sum of a list of numbers
- What is the base case?

$$
\text { - length=0 (empty list) => sum = } 0
$$

- If we assume we can sum the first $\mathrm{n}-1$ items in the list, how can we get the sum of the whole list from that?

$$
- \text { sum (list) }=\text { sum (list[0]..list[n-2]) }+ \text { list[n-1] }
$$

Recursive functions: ints and lists

- Recursive functions over integers follow this pattern:

```
type f(int n) {
    if (n==0)
        //do the base case
    else
        // ... f(n-1) ...
}
```

- Recursive functions over lists (arrays, linked lists, strings) use the length of the list in place of n
- base case: if (length==0) ... // empty list
- recursive case: assume f works for list of length $n-1$, compute the answer for a list with one more element.

Recursive function example

sum of a list (array)

```
int sum(int a[], int size) { //size is number of elems
    if (size==0)
        return 0;
    else
        return sum(a,size-1) + a[size-1];
}
            call sum on first n-1 elements The last element
For a list with size = 4: }\quad\operatorname{sum}(a,4)
                                    sum(a,3) + a[3] =
                            (sum(a,2) +a[2]) +a[3]=
            ((sum(a,1) +a[1])+a[2]) +a[3]=
(((sum(a,0) + a[0]) + a[1]) + a[2]) + a[3] =
    0 +a[0] +a[1] +a[2] + a[3]
```


Recursive function example

greatest common divisor

- Greatest common divisor of two non-zero ints is the largest positive integer that divides the numbers evenly (without a remainder)
- This is a variant of Euclid's algorithm:
$\operatorname{gcd}(x, y)=y \quad$ if x / y has no remainder otherwise:
$\operatorname{gcd}(x, y)=\operatorname{gcd}(y, r e m a i n d e r$ of $x / y)$
- It's a recursive definition, correctness is proven elsewhere.

Recursive function example
 greatest common divisor

- Code:

```
int gcd(int x, int y) {
    if (x % y == 0) {
        return y;
    } else {
        return gcd(y, x % y);
    }
}
int main() {
    cout << "GCD(9,1): " << gcd(9,1) << endl;
    cout << "GCD(1,9): " << gcd(1,9) << endl;
    cout << "GCD(9,2): " << gcd(9,2) << endl;
    cout << "GCD(70,25): " << gcd(70,25) << endl;
```



```
}
```


Recursive function example

Fibonacci numbers

- Note: the recursive fibonacci functions works as written, but it is VERY inefficient.
- Counting the recursive calls to fib:

[^0]
[^0]: The first 40 fibonacci numbers:
 fib (0) $=0$ \# of recursive calls to fib $=1$
 fib (1)=1 \# of recursive calls to fib $=1$
 fib (2)= 1 \# of recursive calls to fib $=3$
 fib (3)= 2 \# of recursive calls to fib $=5$
 fib (4)= 3 \# of recursive calls to fib $=9$
 fib (5) $=5$ \# of recursive calls to $\mathrm{fib}=15$
 fib (6)= 8 \# of recursive calls to fib $=25$
 fib (7)= 13 \# of recursive calls to fib $=41$
 fib (8) $=21$ \# of recursive calls to fib $=67$
 fib (9) $=34$ \# of recursive calls to $\mathrm{fib}=109$
 fib $(40)=102,334,155$ \# of recursive calls to $\mathrm{fib}=331,160,281$

