
CS 2308: Foundations of Computer Science II
Fall 2018

Section 003
Section 004

Instructor: Dr. Jill Seaman
 Comal 210D
 js236@txstate.edu

Course Webpage: http://www.cs.txstate.edu/~js236/cs2308

Office Hours: M,W: 11:00am – 12:30pm
 T, R: 2:00pm – 3:00pm
 and by appt.

Meeting Time/Place: Section 003: MW 2:00PM-3:20PM DERR 234
 Section 004: MW 3:30PM-4:50PM DERR 234

Open Labs: DERR 231: Linux Lab
 MCS 590: Windows Lab
 MCS 594: Lab tutors

Text: Tony Gaddis, Starting out with C++: From Control Structures through Objects,
 9th Edition, ISBN: 0134544846 (8th edition is allowed)

List of required recommended/readings:
 Chapters 1-7, 11.1-11.8 (review of CS 1428) (recommended)
 Chapters 8,9,11,13,18,19 (required)  
 See course website for a daily schedule.

Required In-Class Response system: We will be using the Squarecap classroom
response system in class. You will be able to submit answers to in-class questions
using a smartphone, tablet, or laptop. To sign up, visit www.squarecap.com on
your web browser (Google Chrome is the preferred browser). Squarecap requires a
paid subscription ($12 for one semester).

Course Description: Fundamentals of object-oriented programming. Introduction to
abstract data types (ADTs) including lists, stacks, and queues. Searching and sorting.
Pointers and dynamic memory allocation. A continuation of CS 1428.

Prerequisites: C or higher in CS 1428: Foundations of Computer Science I

Course Objectives:
 At the end of the course, the students should be able to:

1. Describe and demonstrate at least two different algorithms for searching and at least

!1

http://www.cs.txstate.edu/~js236/cs2308
http://www.squarecap.com
http://cs.txstate.edu/courses/courseinfo.php?course_id=CS%201428

two different algorithms for sorting.
2. Implement a divide-and-conquer algorithm to solve an appropriate problem (binary

search).
3. State the time/space efficiency of various algorithms (using one of 6 categories of

mathematical functions).
4. List the 6 categories of mathematical functions used in analyzing algorithms in order

from slowest to fastest growing.
5. Read and write C++ code that uses pointer variables and memory operations (new, &,

*, delete), including pointers to arrays, structures, and objects and the -> operator.
6. Write C++ code that resizes an array using dynamic memory allocation.
7. Write C++ code that deletes dynamically allocated memory to avoid memory leaks.
8. Describe the basic concepts of object-oriented programming.
9. Design, implement, test, and debug simple programs (using objects) in an object-

oriented programming language (C++).
10.Describe how the class mechanism supports encapsulation and information hiding.
11.Develop (implement) programs using multiple classes and arrays of objects
12.Develop and use appropriate algorithms, especially for processing lists (insert, remove,

search, sort, etc.)
13.Describe structured programming in terms of modules and functions.
14.Develop (implement) programs with source code separated into multiple files, including

header (.h) files
15.Create, compile, and run a C++ program in a unix style command-line environment
16.Develop (Implement) C++ programs that create and use simple linked-lists, including

code to insert into, delete from, and traverse a linked list structure.
17. Compare and contrast the costs and benefits of dynamic and static data structure

implementations.
18.Describe the principle of the Abstract Data Type (ADT) and, in particular, explain the

benefits of separation of interface and implementation.
19. Implement user-defined data structures in a high-level language.
20. Implement the list, stack, and queue ADT using arrays and linked lists.
21.Write programs that use each of the following data structures: linked lists, stacks, and

queues.

Grading: Participation: 15% Squarecap & Attendance
 Programming Assignments: 20% lowest of 6 is dropped
 Exam I: 15% Oct 15 (Mon)
 Exam II: 15% Nov 19 (Mon)
 Final Exam (comprehensive): 35%
 section 003: Wed Dec 12 2:00pm - 4:30pm
 section 004: Mon Dec 10 2:00pm - 4:30pm

Participation: Bring a web-enabled device to every class to access the Squarecap system.
You will be asked questions each day in class (2 points each). We will also track
attendance (2 points per day). Your participation grade is computed as follows:  
avg = (your squarecap points + your attendance points) / total possible points  
participation = the minimum of: avg*100 / 80 and 100%. 
This means you can miss up to 20% of the points and still get 100%.

!2

Makeup Policy: Missed Squarecap questions, attendance, and programming assignments
cannot be made up. Exams may be made up in exceptional circumstances, with
approval from the instructor.

Reading assignments: There will be assigned reading from the book for each lecture class.
A reading schedule will be posted on the class website. You should come to
class each day prepared to answer Squarecap questions over the assigned
reading for that day.

Late policy for programming assignments: see the class webpage.

Notifications from the instructor: Notifications related to this class will be sent to your
Texas State e-mail account. Be sure to check it regularly.

TRACS: We will use the TRACS website for the following:
• Grades (Gradebook tool)
• Programming assignment submissions (Assignments tool)
• Resources (code you can use in your programing assignments)
• Attendance (use in class to report your attendance)
Everything else will be on the class webpage (including lecture presentations)

HELP: Other than the instructor’s office hours, you may obtain assistance here:

MCS 590: Computer Science Department Lab Tutors are available in MCS 594 to help
with your programming assignments.

CLC (Collaborative Learning Center): Free walk-in tutoring provided by students in
the H-LSAMP Scholars Program. 4203 and 4204 RF Mitte Building.

SLAC (Student Learning Assistance Center): walk-in tutoring lab and
Supplemental Instruction: a nontraditional form of tutoring that focuses on
collaboration, group study, and interaction for assisting students undertaking
“traditionally difficult” courses. A trained peer who has successfully negotiated
the course (the SI Leader) will facilitate 3 one-hour study sessions per week for
group study. Our SI Leaders are: Jack Wagner (jrw210) for section 003 and
Samantha Aziz (sda69) for section 004.

Withdrawals/drops: You must follow the withdrawal and drop policy set up by the
University and the College of Science and Engineering. You are responsible for
making sure that the drop process is complete.
http://www.registrar.txstate.edu/registration/dropping-or-withdrawing.html

 Last day to drop with automatic “W”: October 29, 2018.

Classroom Behavior: The main rule is to not disrupt or distract other students during class!
Additionally please treat other students and the instructors with respect.

Academic Honesty: You are expected to adhere to the University's Academic Honor
Code as described here: http://www.txstate.edu/effective/upps/
upps-07-10-01.html.

!3

http://www.registrar.txstate.edu/registration/dropping-or-withdrawing.html
http://www.txstate.edu/effective/upps/upps-07-10-01.html

• You may work together on your programming assignments. If you submit a
program that is the result of group work, you must list the names of all
contributors in the file header. Each student must submit their own program,
even if it is the same as another students’.  

• Do not include code obtained from the internet or any other source in your
programming assignment (except what is provided by the instructor during the
current semester). Do not post your solution anywhere on the internet. The
penalty for either of these violations will be a 0 for that assignment.

Accommodations for students with disability:
Any student with needs requiring special accommodations should contact the
office of disability services at the LBJ student center. Students who qualify for
extra time for exams must take their test with ATSD and must schedule their
test at the same time the test is given in class. Note: you must submit your
request with ATSD at least 2 business days before the exam date!

Course Content: There are 6 main topics or units:
Unit 1: Functions, Arrays, & Structs
Unit 2: Searching, Sorting, & Analysis
Unit 3: Pointers & Dynamic Memory Allocation
Unit 4: Intro to Classes
Unit 5: Linked Lists
Unit 6: Stacks & Queues

 For each unit I will provide the following (posted on the class website):
• Reading assignments from the book.
• Lecture slides (for your reference)
• A Programming Assignment

Use of Squarecap in this class:

• 2 points per question (1 for correctness, 1 for answering)
• 1-5 questions per day (none on test days)
• Some discussion questions will be asked twice (once before and once after

discussion), for a total of 4 points each.

Exam coverage:
Exam 1 covers Units 1-3.
Exam 2 covers Units 4-6.
Final Exam covers Units 1-6

Each Exam will have about 25 multiple choice questions and 3-5 programming questions.

!4

