
1

Searching, Sorting & Analysis

Unit 2

Chapter 8

CS 2308
Fall 2018

Jill Seaman

2

Definitions of Search and Sort

l Search: find a given item in an array, return the
index of the item, or -1 if not found.

l Sort: rearrange the items in an array into some
order (smallest to biggest, alphabetical order,
etc.).

l There are various methods (algorithms) for
carrying out these common tasks.

l Which ones are better? Why?

3

Linear Search

l Very simple method.
l Compare first element to target value,  

if not found then compare second element to
target value . . .

l Repeat until: 
target value is found (return its index) or  
we run out of items (return -1).

4

Linear Search in C++
first attempt

int searchList (int list[], int size, int target) {

 int position = -1; //position of target

 for (int i=0; i<size; i++)
 {
 if (list[i] == target) //found the target!
 position = i; //record which item
 }
 return position;
}

Is this algorithm correct (does it calculate the right value)?

Is this algorithm efficient (does it do unnecessary work)?

5

Linear Search in C++
second attempt

int searchList (int list[], int size, int target) {

 int position = -1; //position of target
 bool found = false; //flag, true when target is found

 for (int i=0; i < size && !found; i++)
 {
 if (list[i] == target) //found the target!
 {
 found = true; //set the flag
 position = i; //record which item
 }
 }
 return position;
}

Is this algorithm correct (does it calculate the right value)?

Is this algorithm efficient (does it do unnecessary work)? 6

Program that uses linear search
#include <iostream>
using namespace std;

int searchList(int[], int, int);

int main() {
 const int SIZE=5;
 int idNums[SIZE] = {871, 750, 988, 100, 822};
 int results, id;

 cout << “Enter the employee ID to search for: “;
 cin >> id;

 results = searchList(idNums, SIZE, id);

 if (results == -1) {
 cout << “That id number is not registered\n”;
 } else {
 cout << “That id number is found at location “;
 cout << results+1 << endl;
 }
}

7

Evaluating the Algorithm
l Does it do any unnecessary work?
l Is it time efficient? How would we know?
l We measure time efficiency of algorithms in terms

of number of main steps required to finish.
l For search algorithms, the main step is comparing

an array element to the target value.
l Number of steps depends on:

− size of input array
− whether or not value is in array
− where the value is in the array 8

Efficiency of Linear Search
how many main steps (comparisons to target)?

Note: if we search for many items that are not in the
array, the average case will be greater than N/2.

N=50,000 In terms of N

Best
Case:

1 1

Average
Case:

25,000 N/2

Worst
Case:

50,000 N

N is the number of elements in the array

9

Binary Search
l Works only for SORTED arrays
l Divide and conquer style algorithm
l Compare target value to middle element in list.
− if equal, then return its index
− if less than middle element, repeat the search in

the first half of list
− if greater than middle element, repeat the search

in last half of list
l If current search list is narrowed down to 0

elements, return -1 10

Binary Search Algorithm
example

target is 11 first

first

first

last

last

last

target < 50

target > 7

target == 11

We use first and last to indicate beginning and end of current search list

11

Binary Search in C++
int binarySearch (int array[], int size, int target) {

 int first = 0, //index of beginning of search list
 last = size – 1, //index of end of search list
 middle, //index of midpoint of search list
 position = -1; //position of target value
 bool found = false; //flag

 while (first <= last && !found) {

 middle = (first + last) /2; //calculate midpoint

 if (array[middle] == target) {
 found = true;
 position = middle;
 } else if (target < array[middle]) {
 last = middle – 1; //search list = lower half
 } else {
 first = middle + 1; //search list = upper half
 }
 }
 return position;
}

What if first + last is odd?
What if first==last?

12

Program using Binary Search
#include <iostream>
using namespace std;

int binarySearch(int[], int, int);

int main() {
 const int SIZE=5;
 int idNums[SIZE] = {100, 750, 822, 871, 988};
 int results, id;

 cout << “Enter the employee ID to search for: “;
 cin >> id;

 results = binarySearch(idNums, SIZE, id);

 if (results == -1) {
 cout << “That id number is not registered\n”;
 } else {
 cout << “That id number is found at location “;
 cout << results+1 << endl;
 }
}

How is this program different
from the one on slide 6?

13

Efficiency of Binary Search

1024 = 210 <==> log2 1024 = 10

Items left to search # Comparisons so far
1024 0
512 1
256 2
128 3
64 4
32 5
16 6
8 7
4 8
2 9
1 10

Calculate worst case (target not in list) for N=1024

Goal: calculate
this value from N

14

Efficiency of Binary Search
If N is the number of elements in the array,
how many comparisons (steps)?

N=50,000 In terms of N

Best
Case:

1 1

Worst
Case:

16 log2 N

1024 = 210 <==> log2 1024 = 10

N = 2steps <==> log2 N = steps

Rounded up to
next whole
number

To what power do I
raise 2 to get N?

15

Is Log2N better than N?
Is binary search better than linear search?

Compare values of N/2, N, and Log2 N as N increases:

N N/2 Log2N
5 2.5 2.3

50 25 5.6
500 250 9

5,000 2,500 12.3
50,000 25,000 15.6

N and N/2 are growing much faster than log N!

slower growing is more efficient (fewer steps).

Is this really a
fair comparison?

16

8.3 Sorting Algorithms

l Sort: rearrange the items in an array into
ascending or descending order. 

l Bubble Sort
l Selection Sort

55 112 78 14 20 179 42 67 190 7 101 1 122 170 8

1 7 8 14 20 42 55 67 78 101 112 122 170 179 190

unsorted

sorted

17

The Bubble Sort

l On each pass:
- Compare first two elements. If the first is bigger,

they exchange places (swap).
- Compare second and third elements. If second is

bigger, exchange them.
- Repeat until last two elements of the list are

compared.
l Repeat this process (keep doing passes) 

until a pass completes with no exchanges
18

Bubble sort
Example: first pass

l 7 2 3 8 9 1 7 > 2, swap
l 2 7 3 8 9 1 7 > 3, swap
l 2 3 7 8 9 1 !(7 > 8), no swap
l 2 3 7 8 9 1 !(8 > 9), no swap
l 2 3 7 8 9 1 9 > 1, swap
l 2 3 7 8 1 9 finished pass 1, did 3 swaps

Note: This is one complete pass!

Note: largest element is now in last position

19

Bubble sort
Example: second and third pass

l 2 3 7 8 1 9 2<3<7<8, no swap, !(8<1), swap
l 2 3 7 1 8 9 (8<9) no swap
l finished pass 2, did one swap 

l 2 3 7 1 8 9 2<3<7, no swap, !(7<1), swap
l 2 3 1 7 8 9 7<8<9, no swap
l finished pass 3, did one swap

2 largest elements
in last 2 positions

3 largest elements
in last 3 positions

20

Bubble sort
Example: passes 4, 5, and 6

l 2 3 1 7 8 9 2<3, !(3<1) swap, 3<7<8<9
l 2 1 3 7 8 9
l finished pass 4, did one swap
l 2 1 3 7 8 9 !(2<1) swap, 2<3<7<8<9
l 1 2 3 7 8 9
l finished pass 5, did one swap
l 1 2 3 7 8 9 1<2<3<7<8<9, no swaps
l finished pass 6, no swaps, list is sorted!

21

Bubble sort
how does it work?

l At the end of the first pass, the largest element is
moved to the end (it’s bigger than all its neighbors)

l At the end of the second pass, the second largest
element is moved to just before the last element.

l The back end (tail) of the list remains sorted.
l Each pass increases the size of the sorted portion.
l No exchanges implies each element is smaller

than its next neighbor (so the list is sorted).

22

Bubble Sort in C++

void bubbleSort (int array[], int size) {

 bool swap;
 int temp;

 do {

 swap = false;
 for (int i = 0; i < (size-1); i++) {

 if (array [i] > array[i+1]) {

 temp = array[i];
 array[i] = array[i+1];
 array[i+1] = temp;
 swap = true;
 }
 }
 } while (swap);
}

23

Program using bubble sort
#include <iostream>
using namespace std;

void bubbleSort(int [], int);
void showArray(int [], int);

int main() {
 int values[6] = {7, 2, 3, 8, 9, 1};

 cout << “The unsorted values are: \n”;
 showArray (values, 6);

 bubbleSort (values, 6);

 cout << “The sorted values are: \n”;
 showArray(values, 6);
}

void showArray (int array[], int size) {
 for (int i=0; i<size; i++)
 cout << array[i] << “ “ ;
 cout << endl;
}

The unsorted values are:
7 2 3 8 9 1
The sorted values are:
1 2 3 7 8 9

Output:

24

Selection Sort

l There is a pass for each position (0..size-1)
l On each pass, the smallest (minimum) element

in the rest of the list is exchanged (swapped)
with element at the current position.

l The first part of the list (the part that is already
processed) is always sorted

l Each pass increases the size of the sorted
portion.

25

Selection sort
Example

l 7 2 3 8 9 1 1 is the min a[5], swap with a[0]
l 1 2 3 8 9 7 2 is the min a[1], self-swap a[1]
l 1 2 3 8 9 7 3 is the min a[2], self-swap a[2]
l 1 2 3 8 9 7 7 is the min a[5], swap with a[3]
l 1 2 3 7 9 8 8 is the min a[5], swap with a[4]
l 1 2 3 7 8 9 sorted

Note: This is five passes

Note: underlined portion of list is sorted.

26

Selection Sort in C++
My version

// Returns the index of the smallest element, starting at start
int findIndexOfMin (int array[], int size, int start) {
 int minIndex = start;
 for (int i = start+1; i < size; i++) {
 if (array[i] < array[minIndex]) {
 minIndex = i;
 }
 }
 return minIndex;
}

// Sorts an array, using findIndexOfMin
void selectionSort (int array[], int size) {
 int temp;
 int minIndex;
 for (int index = 0; index < (size -1); index++) {
 minIndex = findIndexOfMin(array, size, index);
 //swap
 temp = array[minIndex];
 array[minIndex] = array[index];
 array[index] = temp;
 }
}

Note: saving the index

We need to find the index of the minimum
value so that we can do the swap

27

void selectionSort(int array[], int size)
{
 for(int i=0; i<size; i++)
 {
 for(j=i+1; j<size; j++)

{
 if(array[i]>array[j])
 {
 temp=array[i];
 array[i]=array[j];
 array[j]=temp;
 }
 }
 }
}

For each element, it scans the
remainder of the array

If the next element is smaller than the
element at the current position (i),
then swap them

Selection Sort in C++
compact version

This finds the smallest element in the
remainder of the list, and it ends up in
position (i)

This version might do more swapping than the previous one

28

Program using Selection Sort
#include <iostream>
using namespace std;

int findIndexOfMin (int [], int, int);
void selectionSort(int [], int);
void showArray(int [], int);

int main() {
 int values[6] = {7, 2, 3, 8, 9, 1};

 cout << “The unsorted values are: \n”;
 showArray (values, 6);

 selectionSort (values, 6);

 cout << “The sorted values are: \n”;
 showArray(values, 6);
}

void showArray (int array[], int size) {
 for (int i=0; i<size; i++)
 cout << array[i] << “ “ ;
 cout << endl;
}

The unsorted values are:
7 2 3 8 9 1
The sorted values are:
1 2 3 7 8 9

Output:

29

Analysis of Algorithms
using Big O notation

l Which algorithm is better, linear search or binary
search?

l Which algorithm is better, bubble sort or selection
sort?

l How can we answer these questions?

l Analysis of algorithms is the determination of the
amount of resources (such as time and storage)
necessary to execute them.

30

Time Efficiency of Algorithms

l To classify the time efficiency of an algorithm:
− Express “time” (using number of main steps), as a

mathematical function of input size (or n below).

l Need a way to be able to compare these math
functions to determine which is better.
− We are mostly concerned with which function has

smaller values (# of steps) at very large data sizes.
− We compare the growth rates of the functions and

prefer the one that grows more slowly.

Binary search: f(n) = log2 (n)

31

Classifications of (math) functions

l Last column is “big O notation”, used in CS.
l It ignores all but dominant term, constant factors

Constant f(x)=b O(1)

Logarithmic f(x)=logb(x) O(log n)

Linear f(x)=ax+b O(n)

Linearithmic f(x)=x logb(x) O(n log n)

Quadratic f(x)=ax2+bx+c O(n2)

Exponential f(x)=2x O(2n)

32

Comparing growth of functions

Time
(# of steps)

Data size (N)

3

33

Time Efficiency of Algorithms

l To classify the time efficiency of an algorithm:
− Express “time” (using number of main steps), as a

mathematical function of input size.
− Determine which classification the function fits into.

l Nearer to the top of the classification chart (on
slide 31) is slower growth, and more efficient
(constant is better than logarithmic, etc.)

34

Efficiency of Searches
(Assuming the array is already sorted)

l Linear Search, worst case:

l Binary Search, worst case:

l Which is slower growing (and thus fewer steps
at large input sizes)?

l Which search algorithm is more time efficient?

O(log N)

Linear search: f(n) = n

Binary search: f(n) = log2 (n)

O(N)

O(log N)

Binary search

35

Efficiency of Selection Sort

l N is the number of elements in the list
l Outer loop executes N-1 times
l Inner loop executes N-1, then N-2, then N-3, ...

then once. One comparison per loop iteration.
l Total number of comparisons (in inner loop):

f(N) = (N-1) + (N-2) + . . . + 2 + 1 = sum of 1 to N-1

sum of 1..N: N + (N-1) + (N-2) + . . . + 2 + 1 = N(N+1)/2

Subtract N from each side:
 (N-1) + (N-2) + . . . + 2 + 1 = N(N+1)/2 - N
 = (N2+N)/2 - 2N/2
 = (N2+N-2N)/2
 = N2/2 - N/2

O(N2) 36

Efficiency of Bubble Sort

l Each pass makes N-1 comparisons
l There will be (at most) N passes
l So worst case it’s:
l If you change the algorithm to look at only the

unsorted part of the array in each pass, it’s
exactly like the selection sort:

l Neither algorithm is more efficient in the worst
case.

O(N2) f(N) = (N-1)*N = N2 - N

(N-1) + (N-2) + . . . + 2 + 1 = N2/2 - N/2 still O(N2)

