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Definitions of Search and Sort

l Search: find a given item in an array, return the 
index of the item, or -1 if not found. 

l Sort: rearrange the items in an array into some 
order (smallest to biggest, alphabetical order, 
etc.). 

l There are various methods (algorithms) for 
carrying out these common tasks. 

l Which ones are better?  Why? 
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Linear Search

l Very simple method. 
l Compare first element to target value,  

if not found then compare second element to 
target value . . . 

l Repeat until: 
target value is found (return its index) or  
we run out of items (return -1). 
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Linear Search in C++ 
first attempt

int searchList (int list[], int size, int target) {

  int position = -1;           //position of target

  for (int i=0; i<size; i++)
  {
    if (list[i] == target) //found the target!
      position = i;        //record which item
  }
  return position;
}

Is this algorithm correct (does it calculate the right value)?

Is this algorithm efficient (does it do unnecessary work)?
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Linear Search in C++ 
second attempt

int searchList (int list[], int size, int target) {

  int position = -1;    //position of target
  bool found = false;   //flag, true when target is found

  for (int i=0; i < size && !found; i++) 
  {
    if (list[i] == target)  //found the target!
    {
      found = true;         //set the flag
      position = i;         //record which item
    }
  }
  return position;
}

Is this algorithm correct (does it calculate the right value)?

Is this algorithm efficient (does it do unnecessary work)? 6

Program that uses linear search
#include <iostream>
using namespace std;

int searchList(int[], int, int);

int main() {
  const int SIZE=5;
  int idNums[SIZE] = {871, 750, 988, 100, 822};
  int results, id;

  cout << “Enter the employee ID to search for: “;
  cin >> id;

  results = searchList(idNums, SIZE, id);

  if (results == -1) {
    cout << “That id number is not registered\n”;
  } else {
    cout << “That id number is found at location “;
    cout << results+1 << endl;
  }
} 
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Evaluating the Algorithm
l Does it do any unnecessary work? 
l Is it time efficient?    How would we know? 
l We measure time efficiency of algorithms in terms 

of number of main steps required to finish. 
l For search algorithms, the main step is comparing 

an array element to the target value. 
l Number of steps depends on: 

− size of input array 
− whether or not value is in array 
− where the value is in the array 8

Efficiency of Linear Search 
how many main steps (comparisons to target)?

Note: if we search for many items that are not in the 
array, the average case will be greater than N/2.

N=50,000 In terms of N

Best 
Case:

1 1

Average 
Case:

25,000 N/2

Worst 
Case:

50,000 N

N is the number of elements in the array
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Binary Search
l Works only for SORTED arrays 
l Divide and conquer style algorithm 
l Compare target value to middle element in list.   
− if equal, then return its index 
− if less than middle element, repeat the search in 

the first half of list 
− if greater than middle element, repeat the search 

in last half of list 
l If current search list is narrowed down to 0 

elements, return -1 10

Binary Search Algorithm 
example

target is 11 first

first

first

last

last

last

target < 50

target > 7

target == 11

We use first and last to indicate beginning and end of current search list
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Binary Search in C++
int binarySearch (int array[], int size, int target) {

  int first = 0,        //index of beginning of search list
      last = size – 1,  //index of end of search list
      middle,           //index of midpoint of search list
      position = -1;    //position of target value
  bool found = false;     //flag

  while (first <= last && !found) {

    middle = (first + last) /2;    //calculate midpoint

    if (array[middle] == target) {
      found = true;
      position = middle;
    } else if (target < array[middle]) {
      last = middle – 1;         //search list = lower half
    } else {
      first = middle + 1;        //search list = upper half
    }
  }
  return position;
}

What if first + last is odd? 
What if first==last?
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Program using Binary Search
#include <iostream>
using namespace std;

int binarySearch(int[], int, int);

int main() {
  const int SIZE=5;
  int idNums[SIZE] = {100, 750, 822, 871, 988};
  int results, id;

  cout << “Enter the employee ID to search for: “;
  cin >> id;

  results = binarySearch(idNums, SIZE, id);

  if (results == -1) {
    cout << “That id number is not registered\n”;
  } else {
    cout << “That id number is found at location “;
    cout << results+1 << endl;
  }
} 

How is this program different 
from the one on slide 6?



13

Efficiency of Binary Search

1024 = 210      <==>   log2 1024 = 10

# Items left to search # Comparisons so far
1024 0
512 1
256 2
128 3
64 4
32 5
16 6
8 7
4 8
2 9
1 10

Calculate worst case (target not in list) for N=1024

Goal: calculate 
this value from N
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Efficiency of Binary Search
If N is the number of elements in the array,  
how many comparisons (steps)?

N=50,000 In terms of N

Best 
Case:

1 1

Worst 
Case:

16 log2 N

1024 = 210      <==>   log2 1024 = 10

N = 2steps      <==>   log2 N = steps

Rounded up to 
next whole 
number

To what power do I 
raise 2 to get N?
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Is Log2N better than N? 
Is binary search better than linear search? 

Compare values of N/2, N, and Log2 N as N increases:

N N/2 Log2N
5 2.5 2.3

50 25 5.6
500 250 9

5,000 2,500 12.3
50,000 25,000 15.6

N and N/2 are growing much faster than log N! 

slower growing is more efficient (fewer steps).

Is this really a 
fair comparison?
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8.3 Sorting Algorithms

l Sort: rearrange the items in an array into 
ascending or descending order. 

l Bubble Sort 
l Selection Sort

55  112  78  14  20  179  42  67  190  7 101 1 122  170 8 

1  7  8  14  20  42  55  67  78  101  112  122 170 179 190 

unsorted

sorted
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The Bubble Sort

l On each pass: 
- Compare first two elements. If the first is bigger, 

they exchange places (swap).  
- Compare second and third elements.  If second is 

bigger, exchange them. 
- Repeat until last two elements of the list are 

compared.  
l Repeat this process (keep doing passes) 

until a pass completes with no exchanges
18

Bubble sort 
Example: first pass

l 7 2 3 8 9 1  7 > 2, swap 
l 2 7 3 8 9 1  7 > 3, swap 
l 2 3 7 8 9 1  !(7 > 8), no swap 
l 2 3 7 8 9 1  !(8 > 9), no swap 
l 2 3 7 8 9 1  9 > 1, swap 
l 2 3 7 8 1 9  finished pass 1, did 3 swaps

Note: This is one complete pass!

Note: largest element is now in last position

19

Bubble sort 
Example: second and third pass

l 2 3 7 8 1 9    2<3<7<8, no swap, !(8<1), swap 
l 2 3 7 1 8 9    (8<9) no swap 
l finished pass 2, did one swap 

l 2 3 7 1 8 9    2<3<7, no swap, !(7<1), swap 
l 2 3 1 7 8 9         7<8<9, no swap 
l finished pass 3, did one swap

2 largest elements  
in last 2 positions

3 largest elements  
in last 3 positions
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Bubble sort 
Example: passes 4, 5, and 6

l 2 3 1 7 8 9     2<3, !(3<1) swap, 3<7<8<9 
l 2 1 3 7 8 9  
l finished pass 4, did one swap 
l 2 1 3 7 8 9     !(2<1) swap, 2<3<7<8<9 
l 1 2 3 7 8 9  
l finished pass 5, did one swap 
l 1 2 3 7 8 9      1<2<3<7<8<9, no swaps 
l finished pass 6, no swaps, list is sorted!
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Bubble sort 
how does it work?

l At the end of the first pass, the largest element is 
moved to the end (it’s bigger than all its neighbors) 

l At the end of the second pass, the second largest 
element is moved to just before the last element. 

l The back end (tail) of the list remains sorted. 
l Each pass increases the size of the sorted portion. 
l No exchanges implies each element is smaller 

than its next neighbor (so the list is sorted).
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Bubble Sort in C++

void bubbleSort (int array[], int size) {

   bool swap;
   int temp;

   do {

      swap = false;
      for (int i = 0; i < (size-1); i++) {

         if (array [i] > array[i+1]) {

            temp = array[i];
            array[i] = array[i+1];
            array[i+1] = temp;
            swap = true;
         }
      }
   } while (swap);
}
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Program using bubble sort
#include <iostream>
using namespace std;

void bubbleSort(int [], int);
void showArray(int [], int);

int main() {
   int values[6] = {7, 2, 3, 8, 9, 1};

   cout << “The unsorted values are: \n”;
   showArray (values, 6);

   bubbleSort (values, 6);

   cout << “The sorted values are: \n”;
   showArray(values, 6);
}

void showArray (int array[], int size) {
   for (int i=0; i<size; i++)
      cout << array[i] << “ “ ;
   cout << endl;
}

The unsorted values are:  
7 2 3 8 9 1  
The sorted values are:  
1 2 3 7 8 9 

Output:
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Selection Sort

l There is a pass for each position (0..size-1) 
l On each pass, the smallest (minimum) element 

in the rest of the list is exchanged (swapped) 
with element at the current position. 

l The first part of the list (the part that is already 
processed) is always sorted 

l Each pass increases the size of the sorted 
portion.
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Selection sort 
Example

l 7 2 3 8 9 1 1 is the min a[5], swap with a[0] 
l 1 2 3 8 9 7 2 is the min a[1], self-swap a[1] 
l 1 2 3 8 9 7 3 is the min a[2], self-swap a[2] 
l 1 2 3 8 9 7 7 is the min a[5], swap with a[3] 
l 1 2 3 7 9 8 8 is the min a[5], swap with a[4] 
l 1 2 3 7 8 9  sorted

Note: This is five passes

Note: underlined portion of list is sorted.
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Selection Sort in C++ 
My version

// Returns the index of the smallest element, starting at start
int findIndexOfMin (int array[], int size, int start) {
   int minIndex = start;
   for (int i = start+1; i < size; i++) {
      if (array[i] < array[minIndex]) {
         minIndex = i;
      }
   }
   return minIndex;
} 

// Sorts an array, using findIndexOfMin   
void selectionSort (int array[], int size) {
   int temp;
   int minIndex;
   for (int index = 0; index < (size -1); index++) {
      minIndex = findIndexOfMin(array, size, index);
      //swap
      temp = array[minIndex];
      array[minIndex] = array[index];
      array[index] = temp;
   }
}
      

Note: saving the index

We need to find the index of the minimum  
value so that we can do the swap
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void selectionSort(int array[], int size)
{
   for(int i=0; i<size; i++)
   {
      for(j=i+1; j<size; j++)

{
         if(array[i]>array[j])
         {
            temp=array[i];
            array[i]=array[j];
            array[j]=temp;
         }
      }
   }
}
      

For each element, it scans the  
remainder of the array

If the next element is smaller than the 
element at the current position (i), 
then swap them

Selection Sort in C++ 
compact version

This finds the smallest element in the 
remainder of the list, and it ends up in 
position (i)

This version might do more swapping than the previous one
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Program using Selection Sort
#include <iostream>
using namespace std;

int findIndexOfMin (int [], int, int);
void selectionSort(int [], int);
void showArray(int [], int);

int main() {
   int values[6] = {7, 2, 3, 8, 9, 1};

   cout << “The unsorted values are: \n”;
   showArray (values, 6);

   selectionSort (values, 6);

   cout << “The sorted values are: \n”;
   showArray(values, 6);
}

void showArray (int array[], int size) {
   for (int i=0; i<size; i++)
      cout << array[i] << “ “ ;
   cout << endl;
}

The unsorted values are:  
7 2 3 8 9 1  
The sorted values are:  
1 2 3 7 8 9 

Output:
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Analysis of Algorithms 
using Big O notation

l Which algorithm is better, linear search or binary 
search? 

l Which algorithm is better, bubble sort or selection 
sort? 

l How can we answer these questions? 

l Analysis of algorithms is the determination of the 
amount of resources (such as time and storage) 
necessary to execute them.
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Time Efficiency of Algorithms

l To classify the time efficiency of an algorithm: 
− Express “time” (using number of main steps), as a 

mathematical function of input size (or n below). 

l Need a way to be able to compare these math 
functions to determine which is better. 
− We are mostly concerned with which function has 

smaller values (# of steps) at very large data sizes. 
− We compare the growth rates of the functions and 

prefer the one that grows more slowly.

Binary search:   f(n) = log2 (n)
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Classifications of (math) functions

l Last column is “big O notation”, used in CS. 
l It ignores all but dominant term, constant factors

Constant f(x)=b O(1)

Logarithmic f(x)=logb(x) O(log n)

Linear f(x)=ax+b O(n)

Linearithmic f(x)=x logb(x) O(n log n)

Quadratic f(x)=ax2+bx+c O(n2)

Exponential f(x)=2x O(2n)
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Comparing growth of functions

Time 
(# of steps)

Data size  (N)

3
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Time Efficiency of Algorithms

l To classify the time efficiency of an algorithm: 
− Express “time” (using number of main steps), as a 

mathematical function of input size. 
− Determine which classification the function fits into. 

l Nearer to the top of the classification chart (on 
slide 31) is slower growth, and more efficient 
(constant is better than logarithmic, etc.)
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Efficiency of Searches 
(Assuming the array is already sorted)

l Linear Search, worst case: 

l Binary Search, worst case: 

l Which is slower growing (and thus fewer steps 
at large input sizes)? 

l Which search algorithm is more time efficient?

O(log N)

Linear search:   f(n) = n

Binary search:   f(n) = log2 (n)

O(N)

O(log N)

Binary search
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Efficiency of Selection Sort

l N is the number of elements in the list 
l Outer loop executes N-1 times 
l Inner loop executes N-1, then N-2, then N-3, ... 

then once.  One comparison per loop iteration. 
l Total number of comparisons (in inner loop):

f(N) = (N-1) + (N-2) + . . . + 2 + 1  =  sum of 1 to N-1 

sum of 1..N:    N + (N-1) + (N-2) + . . . + 2 + 1 = N(N+1)/2 

Subtract N from each side: 
        (N-1) + (N-2) + . . . + 2 + 1 = N(N+1)/2 - N 
                                                   = (N2+N)/2 - 2N/2 
                                                   = (N2+N-2N)/2 
                                                   = N2/2 - N/2

O(N2) 36

Efficiency of Bubble Sort

l Each pass makes N-1 comparisons 
l There will be (at most) N passes  
l So worst case it’s: 
l If you change the algorithm to look at only the 

unsorted part of the array in each pass, it’s 
exactly like the selection sort: 

l Neither algorithm is more efficient in the worst 
case.

O(N2) f(N) = (N-1)*N = N2 - N

(N-1) + (N-2) + . . . + 2 + 1  =  N2/2 - N/2 still O(N2)


