
!1

Pointers &  
Dynamic Memory Allocation

Unit 3

Chapter 9

CS 2308
Fall 2018

Jill Seaman

A pointer is a variable that contains the address of a
variable. Pointers are much used in C, partly because they
are sometimes the only way to express a computation, and
partly because they usually lead to more compact and
efficient code than can be obtained in other ways. Pointers
and arrays are closely related; this chapter also explores
this relationship and shows how to exploit it.

Pointers have been lumped with the goto statement as a
marvelous way to create impossible-to-understand
programs. This is certainly true when they are used
carelessly, and it is easy to create pointers that point
somewhere unexpected. With discipline, however, pointers
can also be used to achieve clarity and simplicity. This is
the aspect that we will try to illustrate.

!2

A Quote

From: “The C Programming Language (2nd ed.)”, Brian W. Kernighan and
Dennis M.Ritchie, Englewood Cliffs, NJ: Prentice Hall. 1988. p. 93.

!3

9.1 The Address Operator
! Consider main memory to be a sequence of consecutive cells  

(1 byte per cell).
! The cells are numbered (like an array). The number of a cell

is its address.
! When your program is compiled, each variable is allocated a

sequence of cells, large enough to hold a value of its type.

! The address operator (&) returns the address of a variable. 
 

! Addresses in C/C++ are displayed in hexadecimal. [bffffb0c = 3,221,224,204]

int x = 99;
cout << x << endl;
cout << &x << endl;

99
0xbffffb0c

Output:

!4

9.2 Pointer Variables

! A pointer variable (or pointer):
− contains the address of a memory cell

! An asterisk is used to define a pointer variable 

! “ptr is a pointer to an int” or
! “ptr can hold the address of an int”

int *ptr;

int * ptr; //same as above
int* ptr; //same as above

!5

Using Pointer Variables

! Assigning an address to a pointer variable:
int x = 99;
int *ptr;

ptr = &x;
cout << x << endl;
cout << ptr << endl;

ptr x

bffffb0c 99

99
0xbffffb0c

Output:

address of x: 0xbffffb0c
!6

Using Pointer Variables
Another example

! Assigning an address to a pointer variable:

int rate = 100;
int *s_rate;

s_rate = &rate;
cout << rate << endl;
cout << s_rate << endl;

100
1004

Output:

s_rate

In this example assume
an int and an address
require only 1 byte of
memory for storage.

!7

Dereferencing Operator: *
! The unary operator * is the indirection or dereferencing

operator.
! It allows you to access the item that the pointer points to.
! *ptr is an alias for the variable that ptr points to.

int x = 1;
int y = 2;
int *ip;

ip = &x; // ip points to x
y = *ip; // y is assigned what ip points to
*ip = 100; // (the variable ip points to) is assigned 100

ip x

bffffb0c 1

y

2 1100X X
!8

pointer declaration vs. dereferencing
! The asterisk is used in 2 different contexts for

pointers, meaning two different things

1.To declare a pointer, in a variable definition:

2.To dereference a pointer, in an expression

int *ip; // ip is defined to be a pointer to an int

y = *ip; // y is assigned what ip points to

!9

Dereferencing Operator

! Another example
int x = 25, y = 50, z = 75;
int *ptr;

ptr = &x;
*ptr = *ptr + 100;

ptr = &y;
*ptr = *ptr + 100;

ptr = &z;
*ptr = *ptr + 100;

cout << x << “ “ << y << “ “ << z << endl;

!10

9.3 Pointers and Arrays

! You can use an array variable (the name of the array)
as if it were a pointer to its first element.

int numbers[] = {10, 20, 30, 40, 50};

cout << “first: ” << numbers[0] << endl;
cout << “first: ” << *numbers << endl;

cout << &(numbers[0]) << endl;
cout << numbers << endl;

first: 10
first: 10
0xbffffb00
0xbffffb00

Output:

numbers = 0xbffffb00 10
0xbffffb04 20
0xbffffb08 30
0xbffffb0c 40
0xbffffb10 50

Array is orange

Addresses in
white boxes

!11

Pointers and Arrays

! When you add a value to a pointer, you are actually
adding that value times the size of the data type
being referenced by the pointer.
int numbers[] = {10, 20, 30, 40, 50};

// sizeof(int) is 4.
// Let us assume numbers is stored at 0xbffffb00
// Then numbers+1 is really 0xbffffb00 + 1*4, or 0xbffffb04
// And numbers+2 is really 0xbffffb00 + 2*4, or 0xbffffb08
// And numbers+3 is really 0xbffffb00 + 3*4, or 0xbffffb0c

0xbffffb00 10
0xbffffb04 20
0xbffffb08 30
0xbffffb0c 40
0xbffffb10 50

Array is orangeAddresses in
white boxes

!12

Pointer and Arrays
! Note unary * has higher precedence than +,  

so the parentheses are required. 
 
 
 
 
 

! Note: array[index] is equivalent to *(array + index)

int numbers[] = {10, 20, 30, 40, 50};

cout << “second: ” << numbers[1] << endl;
cout << “second: ” << *(numbers+1) << endl;

cout << "size: " << sizeof(int) << endl;
cout << numbers << endl;
cout << numbers+1 << endl;

second: 20
second: 20
size: 4
0xbffffb00
0xbffffb04

Output:

!13

Pointers and Arrays
! pointer operations can be used with array

variables. 

! subscript operations can be used with pointers. 

! Only difference: you cannot change the value
of the array variable.

int list[10];
cin >> *(list+3);

int list[] = {1,2,3};
int *ptr;
ptr = list;
cout << ptr[2];

double totals[20];
double *dptr;
dptr = totals; //ok
totals = dptr; //wrong!!, totals is a const

!14

9.5 Initializing Pointers

! Pointers can be initialized when they are defined. 
 
 
 

! Note: pointers to data type d can be defined along
with other variables of type d. 
 
 

int myValue;
int *pint = &myValue;

int ages[20];
int *pint1 = ages;

int *p1 = &myValue, *p2=ages, x=1;

double x, y, *d, radius;

note: you are initializing the pointer,
NOT the variable the pointer points to.

!15

9.7 Pointers as Function Parameters

! Use pointers to implement pass by reference. 
 
 
 
 
 

! How is the syntax different from using reference
parameters?

//prototype: void changeVal(int *);

void changeVal (int *val) {
 *val = *val * 11;
}

int main() {
 int x;
 cout << "Enter an int " << endl;
 cin >> x;
 changeVal(&x);
 cout << x << endl;
}

!16

Pointers as array parameter
! Pointer may be used as a parameter for array arg 
 
 
 
 

double totalSales(double *arr, int size) {
 double sum = 0.0;
 for (int i=0; i<size; i++) {
 sum += arr[i]; // or sum += *(arr+i);
 }
 return sum;
}

int main() {
 double sales[4];
 // input data into sales here
 cout << “Total sales: “ << totalSales(sales, 4) << endl;
}

!17

9.4 Pointer Arithmetic

! Operations on pointers to data type d:

− ptr+n where n is int: ptr+n*sizeof(d)
− ptr–n where n is int: ptr-n*sizeof(d)
− ++ and -- : ptr=ptr+1 and ptr=ptr-1  

changes ptr to point to next/prev variable of type d
− += and -=
− subtraction: ptr1 – ptr2  

result is number of values of type d between the two
pointers.

d *ptr;

!18

9.6 Comparing Pointers
! pointers maybe compared using relational

operators (based on their address values):  
 < <= > >= == !=

! Examples: 
 

! What is the difference?
− ptr1 < ptr2
− *ptr1 < *ptr2

int arr[25];

cout << (&arr[1] > &arr[0]) << endl;
cout << (arr == &arr[0]) << endl;
cout << (arr <= &arr[20]) << endl;
cout << (arr > arr+5) << endl;

!19

9.8 Dynamic Memory Allocation

! When a function is called, memory for local
variables is automatically allocated.

! When a function exits, memory for local variables
automatically disappears.

! Must know ahead of time the maximum number of
variables you may need.

! Dynamic Memory allocation allows your program
to create variables on demand, during run-time.

!20

The new operator

! “new” operator requests dynamically allocated
memory for a certain data type: 
 

! new operator returns the address of a newly
created anonymous variable.

! use dereferencing operator to access it:

int *iptr;
iptr = new int;

*iptr = 11;
cin >> *iptr;
int value = *iptr + 3;

!21

Dynamically allocated arrays

! dynamically allocate arrays with new:

! Program will throw an exception and terminate if
not enough memory available to allocate

int *iptr; //for dynamically allocated array
int size;

cout << “Enter number of ints to be stored: “;
cin >> size;
iptr = new int[size];

for (int i=0; i<size; i++) {
 iptr[i] = i; // populating the array
}

!22

delete!
! When you are finished using a variable created

with new, use the delete operator to destroy it: 
 
 

! Do not “delete” pointers whose values were NOT
dynamically allocated using new!

! Do not forget to delete dynamically allocated
variables (Memory Leaks!!). 

int *ptr;
double *array;

ptr = new int;
array = new double[25];
. . .
delete ptr;
delete [] array; // note [] required for dynamic arrays!

!23

9.9 Returning Pointers from Functions

! functions may return pointers: 
 
 
 

! The returned pointer must point to
− dynamically allocated memory OR
− an item passed in via an argument

int * findZero (int arr[]) {
 int *ptr;
 ptr = arr;
 while (*ptr != 0)
 ptr++;
 return ptr;
}

NOTE: the return type of this function is
(int *) or pointer to an int.

NOTE: if the function returns dynamically allocated memory,
then it is the responsibility of the calling function to delete it. !24

Returning Pointers from Functions: 
duplicateArray

int a [5] = {11, 22, 33, 44, 55};
int *b = duplicateArray(a, 5);
for (int i=0; i<5; i++)
 if (a[i] == b[i])
 cout << i << “ ok” << endl;
delete [] b; //caller deletes mem

0 ok
1 ok
2 ok
3 ok
4 ok

Output

int *duplicateArray (int *arr, int size) {

 int *newArray;
 if (size <= 0) //size must be positive
 return NULL; //NULL is 0, an invalid address

 newArray = new int [size]; //allocate new array

 for (int index = 0; index < size; index++)
 newArray[index] = arr[index]; //copy to new array

 return newArray;
}

!25

Problems returning pointers
(watchout)

! Bad: 
 

− what happens to list on function exit? 

! Good:

int *getList() {
 int list[80];
 for (int i = 0; i<80; i++)
 list[i] = i;
 return list;
}

int *getList () {
 int *list;
 list = new int[80];
 for (int i=1; i<80; i++)
 list[i] = i;
 return list;
} !26

Variable Length Arrays
! Some compilers allow you to use a variable to

define the size of a regular (static) array: 
 
 
 

− what happens to list on function exit?
! Like dynamic arrays, size is determined at runtime
! Unlike dynamic arrays, array is deleted/deallocated

at the end of the function.
! This is NOT a feature of standard C++!!

void f() {
 int size;
 cout << “Enter list length:” << endl;
 cin >> size;
 string list[size]; //size determined at runtime
... }

