
!1

Recursion

Week 10

Gaddis:19.1-19.5 (8th ed.)
Gaddis:20.1-20.5 (9th ed.)

CS 5301
Fall 2018

Jill Seaman

!2

What is recursion?

! Generally, when something
contains a reference to itself

! Math: defining a function in terms
of itself

! Computer science: when a
function calls itself:
void message() {
 cout << “This is a recursive function.\n”;
 message();
}
int main() {
 message();
} What happens when this is executed?

!3

How can a function call itself?

! Infinite Recursion:
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
...

Note: If you encounter infinite recursion in Lab, be sure
to STOP your program BEFORE running it again!!! !4

Recursive message() modified

! How about this one?
void message(int n) {
 if (n > 0) {
 cout << “This is a recursive function.\n”;
 message(n-1);
 }
}
int main() {
 message(5);
}

!5

Tracing the calls

! 6 nested calls to message:

! depth of recursion (#times it calls itself) = 5.

message(5):
 outputs “This is a recursive function”
 calls message(4):
 outputs “This is a recursive function”
 calls message(3):
 outputs “This is a recursive function”
 calls message(2):
 outputs “This is a recursive function”
 calls message(1):
 outputs “This is a recursive function”
 calls message(0):
 does nothing, just returns

!6

How to write recursive functions
! Branching is required (If or switch)
! Find a base case
- one (or more) values for which the result of the

function is known (no repetition required to solve it)
- no recursive call is allowed here

! Develop the recursive case
- For a given argument (say n), assume the function

works for a smaller value (n-1).
- Use the result of calling the function on n-1 to form a

solution for n

!7

Recursive function example
factorial

! Mathematical definition of n! (factorial of n)

! What is the base case?
- n=0 (the result is 1)

! Recursive case: If we assume (n-1)! can be
computed, how can we get n! from that?
- n! = n * (n-1)!

if n=0 then n! = 1
if n>0 then n! = 1 x 2 x 3 x ... x n-1 x n

!8

Recursive function example
factorial

int factorial(int n) {
 if (n==0)
 return 1;
 else
 return n * factorial(n-1);
}

int main() {
 int number;
 cout << “Enter a number “;
 cin >> number;
 cout << “The factorial of “ << number << “ is “
 << factorial(number) << endl;
}

!9

Tracing the calls

! Calls to factorial:

! Every call except the last makes a recursive call
! Each call makes the argument smaller

factorial(4):
 return 4 * factorial(3);
 calls factorial(3):
 return 3 * factorial(2);
 calls factorial(2):
 return 2 * factorial(1);
 calls factorial(1):
 return 1 * factorial(0);
 calls factorial(0):
 return 1;

=2 * 1 = 2

=3 * 2 = 6

=4 * 6 = 24

=1 * 1 = 1

!10

Recursive functions: ints and lists
! Recursive functions over integers follow this

pattern:

! Recursive functions over lists (arrays, linked lists,
strings) use the length of the list in place of n
- base case: if (length==0) … // empty list
- recursive case: assume f works for list of length n-1,

compute the answer for a list with one more element.

type f(int n) {
 if (n==0)
 //do the base case
 else
 // ... f(n-1) ...
}

!11

Recursive function example
sum of the list

! Recursive function to compute sum of a list of
numbers

! What is the base case?
- length=0 (empty list) => sum = 0

! If we assume we can sum the first n-1 items in
the list, how can we get the sum of the whole list
from that?
- sum (list) = sum (list[0]..list[n-2]) + list[n-1]

Assume I am given the answer to this
!12

Recursive function example
sum of a list (array)

int sum(int a[], int size) { //size is number of elems
 if (size==0)
 return 0;
 else
 return sum(a,size-1) + a[size-1];
}

 sum(a,3) + a[3] =
 (sum(a,2) + a[2]) + a[3] =
 ((sum(a,1) + a[1]) + a[2]) + a[3] =
(((sum(a,0) + a[0]) + a[1]) + a[2]) + a[3] =
 0 + a[0] + a[1] + a[2] + a[3]

For a list with size = 4: sum(a,4) =

The last elementcall sum on first n-1 elements

!13

Recursive function example
count character occurrences in a string

! Write a recursive function to count the number of
times a specific character appears in a string

! We will use the string member function substr to
make a smaller string:
- string str.substr (int pos, int length);
- Returns a newly constructed string object containing the portion

of str that starts at character position pos and spans len
characters (or until the end of the string, whichever comes first).

string x = “hello there”;
cout << x.substr(0,10) << endl;
cout << x.substr(1,10) << endl;
cout << x[4] << endl;

hello ther
ello there
o

Output:

!14

Recursive function example
count character occurrences in a string

int numChars(char target, string str) {
 if (str.empty()) {
 return 0;
 } else { //make recursive call, then modify the results:
 int result = numChars(target, str.substr(1,str.size()-1));
 if (str[0]==target)
 return 1+result;
 else
 return result;
 }
}

int main() {
 string a = "hello";
 cout << a << “ “ << numChars('l',a) << endl;
}

! This example is different from how the book does it.
! I use substr to make a copy of str with the first character

removed to make the recursive call on a shorter string.

!15

Recursive function example
greatest common divisor

! Greatest common divisor of two non-zero ints is the
largest positive integer that divides the numbers
evenly (without a remainder)

! This is a variant of Euclid’s algorithm:

! It’s a recursive definition, correctness is proven
elsewhere.

gcd(x,y) = y if x/y has no remainder otherwise:
gcd(x,y) = gcd(y,remainder of x/y)

!16

Recursive function example
greatest common divisor

! Code:
int gcd(int x, int y) {
 if (x % y == 0) {
 return y;
 } else {
 return gcd(y, x % y);
 }
}

int main() {
 cout << "GCD(9,1): " << gcd(9,1) << endl;
 cout << "GCD(1,9): " << gcd(1,9) << endl;
 cout << "GCD(9,2): " << gcd(9,2) << endl;
 cout << "GCD(70,25): " << gcd(70,25) << endl;
 cout << "GCD(25,70): " << gcd(25,70) << endl;
}

!17

Recursive function example
Fibonacci numbers

! Series of Fibonacci numbers:

! Starts with 0, 1. Then each number is the sum of
the two previous numbers

! It’s a recursive definition

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

F0 = 0
F1 = 1
Fi = Fi-1 + Fi-2 (for i > 1)

int fib(int x) {
 if (x==0 || x==1)
 return x;
 else
 return fib(x-1) + fib(x-2);
} !18

Recursive function example
Fibonacci numbers

! Note: the recursive fibonacci functions works as
written, but it is VERY inefficient.

! Counting the recursive calls to fib:
The first 40 fibonacci numbers:
fib (0)= 0 # of recursive calls to fib = 1
fib (1)= 1 # of recursive calls to fib = 1
fib (2)= 1 # of recursive calls to fib = 3
fib (3)= 2 # of recursive calls to fib = 5
fib (4)= 3 # of recursive calls to fib = 9
fib (5)= 5 # of recursive calls to fib = 15
fib (6)= 8 # of recursive calls to fib = 25
fib (7)= 13 # of recursive calls to fib = 41
fib (8)= 21 # of recursive calls to fib = 67
fib (9)= 34 # of recursive calls to fib = 109
...
fib (40)= 102,334,155 # of recursive calls to fib = 331,160,281

!19

Recursive functions over linked lists
! Member functions of a linked list class can be

defined recursively.
- These functions take a pointer to a node in the list

as a parameter
- They compute the function for the list starting at the

node p points to.
! The pattern:
- base case: empty list, when p is NULL
- recursive case: assume f works for list starting at  

p->next, what is the answer for the list starting at p?
(it has one more element). !20

Recursive function example
count the number of nodes in a list

class NumberList
{
 private:
 struct ListNode {
 double value;
 struct ListNode *next;
 };
 ListNode *head;
 int countNodes(ListNode *); //private version, recursive

 public:
 NumberList();
 NumberList(const NumberList & src);
 ~NumberList();
 void appendNode(double);
 void insertNode(double);
 void deleteNode(double);
 void displayList();
 int countNodes(); //public version, calls private
};

!21

Recursive function example
count the number of nodes in a list

// the private version, has a pointer parameter
// How many nodes are in the list starting at the pointer?
int NumberList::countNodes(ListNode *p) {
 if (p == NULL)
 return 0;
 else
 return 1 + countNodes(p->next);
}

// the public version, no arguments (Nodes are private)
// calls the recursive function starting at head
int NumberList::countNodes() {
 return countNodes(head);
}

Note that this function is overloaded !22

Recursive function example
display the node values in reverse order

// the private version, needs a pointer parameter
void NumberList::reverseDisplay(ListNode *p) {
 if (p == NULL) {
 //do nothing
 } else {
 //display the “rest” of the list in reverse order
 reverseDisplay(p->next);
 cout << p->value << “ “;
 }
}

// the public version, no arguments
void NumberList::reverseDisplay() {
 reverseDisplay(head);
 cout << endl;
}

! Append x to the end of a singly linked list:
- Pass the node pointer by reference
- Recursive

!23

Linked List example:

void List::append (double x) {
 append(x, head);
}

void List::append (double x, Node *& p) {

 if (p == NULL) {
 p = new Node;
 p->data = x;
 p->next = NULL;
 }
 else
 append (x, p->next);
}

Public function

Private recursive function

Pointer is passed
by reference!!

!24

Why use recursion?
! It is true that recursion is never required to

solve a problem
- Any problem that can be solved with recursion can

also be solved using iteration.
! Recursion requires extra overhead: function

call+ return mechanism uses extra resources

! Some repetitive problems are more easily and
naturally solved with recursion
- the recursive solution is often shorter, more elegant,

easier to read and debug.

However:

