
!1

Searching & Sorting
Week 11 

Gaddis: 8, 19.6,19.8 (8th ed) 
Gaddis: 8, 20.6,20.8 (9th ed) 

CS 5301 
Fall 2018 

Jill Seaman
!2

Definitions of Search and Sort

! Search: find a given item in a list, return the 
position of the item, or -1 if not found. 

! Sort: rearrange the items in a list into some 
order (smallest to biggest, alphabetical order, 
etc.). 

! “list” could be: array, linked list, string, etc. 
! There are various methods (algorithms) for 

carrying out these common tasks.

!3

Linear Search

! Compare first element to target value,  
if not found then compare second element to target value 
. . . 

! Repeat until: 
target value is found (return its position) or  
we run out of items (return -1). 

int searchList (int list[], int size, int value) {

  for (int i=0; i<size; i++) 
  {
    if (list[i] == value) 
       return i;
  }
  return -1;
}

!4

Other forms of Linear Search

! Recursive linear search over arrays 
− Gaddis ch 19/20, Prog Challenge #8: isMember 

! Linear search over linked list 
− Gaddis ch 17/18, Prog Challenge #5: List search 

! Recursive linear search over linked list 
− Another good exercise 



!5

Binary Search
! Works only for SORTED arrays 
! Divide and conquer style algorithm 
! Compare target value to middle element in list.   

− if equal, then return its index 
− if less than middle element, repeat the search in 

the first half of list 
− if greater than middle element, repeat the search 

in last half of list 
! If current search list is narrowed down to 0 

elements, return -1 !6

Binary Search Algorithm 
example

target is 11 first

first

first

last

last

last

target < 50

target > 7

target == 11

!7

Binary Search in C++ 
Iterative version

int binarySearch (int array[], int size, int target) {

  int first = 0,          //index to (current) first elem
      last = size – 1,    //index to (current) last elem
      middle,             //index of (current) middle elem
      position = -1;      //index of target value
  bool found = false;     //flag

  while (first <= last && !found) {

    middle = (first + last) /2;    //calculate midpoint

    if (array[middle] == target) {
       found = true;
       position = middle;
    } else if (target < array[middle]) {
       last = middle – 1;           //search lower half
    } else {
       first = middle + 1;          //search upper half
    }
  }
  return position;
}

!8

Binary Search in C++ 
Recursive version

int binarySearchRec(int array[], int first, int last, int value)
{
    int middle; // Mid point of search
    
    if (first > last)           //check for empty list
        return -1;
    middle = (first + last)/2;  //compute middle index
    if (array[middle]==value)
        return middle;
    if (value < array[middle])    //recursion
        return binarySearchRec(array, first,middle-1, value);
    else
        return binarySearchRec(array, middle+1,last, value);
}

int binarySearch(int array[], int size, int value) {
    return binarySearchRec(array, 0, size-1, value);
}



!9

What is sorting?
! Sort: rearrange the items 

in a list into ascending or 
descending order 
- numerical order 
- alphabetical order 
- etc. 

55  112  78  14  20  179  42  67  190  7 101 1 122  170 8 

1  7  8  14  20  42  55  67  78  101  112  122 170 179 190 
!10

Selection Sort

! There is a pass for each position (0..size-1) 
! On each pass, the smallest (minimum) 

element in the rest of the list is exchanged 
(swapped) with element at the current 
position. 

! The first part of the list (the part that is already 
processed) is always sorted 

! Each pass increases the size of the sorted 
portion.

!11

Selection sort 
Example

! 7 2 3 8 9 1 1 is the min a[5], swap with a[0] 
! 1 2 3 8 9 7 2 is the min a[1], self-swap a[1] 
! 1 2 3 8 9 7 3 is the min a[2], self-swap a[2] 
! 1 2 3 8 9 7 7 is the min a[5], swap with a[3] 
! 1 2 3 7 9 8 8 is the min a[5], swap with a[4] 
! 1 2 3 7 8 9 sorted

Note: underlined portion of list is sorted.

!12

Selection sort: code
// Returns the index of the smallest element, starting at start
int findIndexOfMin (int array[], int size, int start) {
   int minIndex = start;
   for (int i = start+1; i < size; i++) {
      if (array[i] < array[minIndex]) {
         minIndex = i;
      }
   }
   return minIndex;
} 

// Sorts an array, using findIndexOfMin   
void selectionSort (int array[], int size) {
   int minIndex;
   for (int index = 0; index < (size -1); index++) {
      minIndex = findIndexOfMin(array, size, index);
      swap(array[minIndex],array[index]);
   }
}

Note: saving the index

We need to find the index of the minimum  
value so that we can do the swap



!13

void selectionSort(int array[], int size)
{
   for(int i=0; i<size; i++)
   {
      for(j=i+1; j<size; j++)

{
         if(array[i]>array[j])
         {
            temp=array[i];
            array[i]=array[j];
            array[j]=temp;
         }
      }
   }
}
      

For each element, it scans the  
remainder of the array

If the next element is smaller than the 
element at the current position (i), 
then swap them

Selection Sort in C++ 
compact version

This finds the smallest element in the 
remainder of the list, and it ends up in 
position (i)

This version might do more swapping than the previous one

!14

Bubble sort
! On each pass: 
- Compare first two elements. If the first is bigger, they 

exchange places (swap).  
- Compare second and third elements.  If second is 

bigger, exchange them. 
- Repeat until last two elements of the list are compared.  

! Repeat this process until a pass 
completes with no exchanges

!15

Bubble sort 
Example

! 7 2 3 8 9 1  7 > 2, swap 
! 2 7 3 8 9 1  7 > 3, swap 
! 2 3 7 8 9 1  !(7 > 8), no swap 
! 2 3 7 8 9 1  !(8 > 9), no swap 
! 2 3 7 8 9 1  9 > 1, swap 
! 2 3 7 8 1 9  finished pass 1, did 3 swaps 

Note: largest element is in last position

!16

Bubble sort 
Example

! 2 3 7 8 1 9    2<3<7<8, no swap, !(8<1), swap 
! 2 3 7 1 8 9    (8<9) no swap 
! finished pass 2, did one swap 

! 2 3 7 1 8 9    2<3<7, no swap, !(7<1), swap 
! 2 3 1 7 8 9    7<8<9, no swap 
! finished pass 3, did one swap

2 largest elements in last 2 positions

3 largest elements in last 3 positions



!17

Bubble sort 
Example

! 2 3 1 7 8 9     2<3, !(3<1) swap, 3<7<8<9 
! 2 1 3 7 8 9  
! finished pass 4, did one swap 
! 2 1 3 7 8 9     !(2<1) swap, 2<3<7<8<9 
! 1 2 3 7 8 9  
! finished pass 5, did one swap 
! 1 2 3 7 8 9      1<2<3<7<8<9, no swaps 
! finished pass 6, no swaps, list is sorted!

!18

Bubble sort 
how does it work?

! At the end of the first pass, the largest element is 
moved to the end (it’s bigger than all its 
neighbors) 

! At the end of the second pass, the second largest 
element is moved to just before the last element. 

! The back end (tail) of the list remains sorted. 
! Each pass increases the size of the sorted 

portion. 
! No exchanges implies each element is smaller 

than its next neighbor (so the list is sorted).

!19

Bubble sort: code
template<class ItemType>
void bubbleSort (ItemType a[], int size) {

    bool swapped;
    do {
        swapped = false;
        for (int i = 0; i < (size-1); i++) {
            if (a[i] > a[i+1]) {                
                swap(a[i],a[i+1]);
                swapped = true;
            }
        }
    } while (swapped);
}

!20

Quick sort
! Divide and conquer! 
! 2 (hopefully) half-sized lists sorted 

recursively 
! the algorithm: 
- If list size is 0 or 1, return.   otherwise:  
- partition into two lists: 

❖ pick one element as the pivot 
❖ put all elements less than pivot in first half 
❖ put all elements greater than pivot in second half 

- recursively sort first half and then second half of list. 



!21

Quicksort 
Example.

!22

Quicksort: partitioning
! Goal: partition a sub-array so that: 
- A[x]<=A[p] for all x<p and A[x]>=A[p] for all x>p 

! 4 8 5 6 3 19 12   pick some element as the pivot 
! rearrange the array so that if the value is less than 

6 it is placed before the 6, if the value is greater 
than the 6 it is placed after the 6. 

! For an array, this might require some swapping 
and shifting.  (See Gaddis text). 

! 4 3 5 6 8 19 12   return 3 as index of pivot (6)

!23

Quicksort: code
int partition (int [], int, int);  //defined in Gaddis

void quickSort(int array[], int start, int end) {
  if (start < end) {
      // Get the pivot point (and partition the set).
      int pivotPoint = partition(array, start, end);
      // Sort the first sub list.
      quickSort(array, start, pivotPoint - 1);
      // Sort the second sub list.
      quickSort(array, pivotPoint + 1, end);
   }
}
void quickSort (int array[], int size) {
    quickSort(array, 0, size-1);
}

Quicksort Example

!24


