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Definitions of Search and Sort

! Search: find a given item in a list, return the 
position of the item, or -1 if not found. 

! Sort: rearrange the items in a list into some 
order (smallest to biggest, alphabetical order, 
etc.). 

! “list” could be: array, linked list, string, etc. 
! There are various methods (algorithms) for 

carrying out these common tasks.
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Linear Search

! Compare first element to target value,  
if not found then compare second element to target value 
. . . 

! Repeat until: 
target value is found (return its position) or  
we run out of items (return -1). 

int searchList (int list[], int size, int value) {

  for (int i=0; i<size; i++) 
  {
    if (list[i] == value) 
       return i;
  }
  return -1;
}
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Other forms of Linear Search

! Recursive linear search over arrays 
− Gaddis ch 19/20, Prog Challenge #8: isMember 

! Linear search over linked list 
− Gaddis ch 17/18, Prog Challenge #5: List search 

! Recursive linear search over linked list 
− Another good exercise 
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Binary Search
! Works only for SORTED arrays 
! Divide and conquer style algorithm 
! Compare target value to middle element in list.   

− if equal, then return its index 
− if less than middle element, repeat the search in 

the first half of list 
− if greater than middle element, repeat the search 

in last half of list 
! If current search list is narrowed down to 0 

elements, return -1 !6

Binary Search Algorithm 
example

target is 11 first

first

first

last

last

last

target < 50

target > 7

target == 11

!7

Binary Search in C++ 
Iterative version

int binarySearch (int array[], int size, int target) {

  int first = 0,          //index to (current) first elem
      last = size – 1,    //index to (current) last elem
      middle,             //index of (current) middle elem
      position = -1;      //index of target value
  bool found = false;     //flag

  while (first <= last && !found) {

    middle = (first + last) /2;    //calculate midpoint

    if (array[middle] == target) {
       found = true;
       position = middle;
    } else if (target < array[middle]) {
       last = middle – 1;           //search lower half
    } else {
       first = middle + 1;          //search upper half
    }
  }
  return position;
}
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Binary Search in C++ 
Recursive version

int binarySearchRec(int array[], int first, int last, int value)
{
    int middle; // Mid point of search
    
    if (first > last)           //check for empty list
        return -1;
    middle = (first + last)/2;  //compute middle index
    if (array[middle]==value)
        return middle;
    if (value < array[middle])    //recursion
        return binarySearchRec(array, first,middle-1, value);
    else
        return binarySearchRec(array, middle+1,last, value);
}

int binarySearch(int array[], int size, int value) {
    return binarySearchRec(array, 0, size-1, value);
}
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What is sorting?
! Sort: rearrange the items 

in a list into ascending or 
descending order 
- numerical order 
- alphabetical order 
- etc. 

55  112  78  14  20  179  42  67  190  7 101 1 122  170 8 

1  7  8  14  20  42  55  67  78  101  112  122 170 179 190 
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Selection Sort

! There is a pass for each position (0..size-1) 
! On each pass, the smallest (minimum) 

element in the rest of the list is exchanged 
(swapped) with element at the current 
position. 

! The first part of the list (the part that is already 
processed) is always sorted 

! Each pass increases the size of the sorted 
portion.
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Selection sort 
Example

! 7 2 3 8 9 1 1 is the min a[5], swap with a[0] 
! 1 2 3 8 9 7 2 is the min a[1], self-swap a[1] 
! 1 2 3 8 9 7 3 is the min a[2], self-swap a[2] 
! 1 2 3 8 9 7 7 is the min a[5], swap with a[3] 
! 1 2 3 7 9 8 8 is the min a[5], swap with a[4] 
! 1 2 3 7 8 9 sorted

Note: underlined portion of list is sorted.
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Selection sort: code
// Returns the index of the smallest element, starting at start
int findIndexOfMin (int array[], int size, int start) {
   int minIndex = start;
   for (int i = start+1; i < size; i++) {
      if (array[i] < array[minIndex]) {
         minIndex = i;
      }
   }
   return minIndex;
} 

// Sorts an array, using findIndexOfMin   
void selectionSort (int array[], int size) {
   int minIndex;
   for (int index = 0; index < (size -1); index++) {
      minIndex = findIndexOfMin(array, size, index);
      swap(array[minIndex],array[index]);
   }
}

Note: saving the index

We need to find the index of the minimum  
value so that we can do the swap
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void selectionSort(int array[], int size)
{
   for(int i=0; i<size; i++)
   {
      for(j=i+1; j<size; j++)

{
         if(array[i]>array[j])
         {
            temp=array[i];
            array[i]=array[j];
            array[j]=temp;
         }
      }
   }
}
      

For each element, it scans the  
remainder of the array

If the next element is smaller than the 
element at the current position (i), 
then swap them

Selection Sort in C++ 
compact version

This finds the smallest element in the 
remainder of the list, and it ends up in 
position (i)

This version might do more swapping than the previous one
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Bubble sort
! On each pass: 
- Compare first two elements. If the first is bigger, they 

exchange places (swap).  
- Compare second and third elements.  If second is 

bigger, exchange them. 
- Repeat until last two elements of the list are compared.  

! Repeat this process until a pass 
completes with no exchanges
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Bubble sort 
Example

! 7 2 3 8 9 1  7 > 2, swap 
! 2 7 3 8 9 1  7 > 3, swap 
! 2 3 7 8 9 1  !(7 > 8), no swap 
! 2 3 7 8 9 1  !(8 > 9), no swap 
! 2 3 7 8 9 1  9 > 1, swap 
! 2 3 7 8 1 9  finished pass 1, did 3 swaps 

Note: largest element is in last position
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Bubble sort 
Example

! 2 3 7 8 1 9    2<3<7<8, no swap, !(8<1), swap 
! 2 3 7 1 8 9    (8<9) no swap 
! finished pass 2, did one swap 

! 2 3 7 1 8 9    2<3<7, no swap, !(7<1), swap 
! 2 3 1 7 8 9    7<8<9, no swap 
! finished pass 3, did one swap

2 largest elements in last 2 positions

3 largest elements in last 3 positions



!17

Bubble sort 
Example

! 2 3 1 7 8 9     2<3, !(3<1) swap, 3<7<8<9 
! 2 1 3 7 8 9  
! finished pass 4, did one swap 
! 2 1 3 7 8 9     !(2<1) swap, 2<3<7<8<9 
! 1 2 3 7 8 9  
! finished pass 5, did one swap 
! 1 2 3 7 8 9      1<2<3<7<8<9, no swaps 
! finished pass 6, no swaps, list is sorted!
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Bubble sort 
how does it work?

! At the end of the first pass, the largest element is 
moved to the end (it’s bigger than all its 
neighbors) 

! At the end of the second pass, the second largest 
element is moved to just before the last element. 

! The back end (tail) of the list remains sorted. 
! Each pass increases the size of the sorted 

portion. 
! No exchanges implies each element is smaller 

than its next neighbor (so the list is sorted).
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Bubble sort: code
template<class ItemType>
void bubbleSort (ItemType a[], int size) {

    bool swapped;
    do {
        swapped = false;
        for (int i = 0; i < (size-1); i++) {
            if (a[i] > a[i+1]) {                
                swap(a[i],a[i+1]);
                swapped = true;
            }
        }
    } while (swapped);
}
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Quick sort
! Divide and conquer! 
! 2 (hopefully) half-sized lists sorted 

recursively 
! the algorithm: 
- If list size is 0 or 1, return.   otherwise:  
- partition into two lists: 

❖ pick one element as the pivot 
❖ put all elements less than pivot in first half 
❖ put all elements greater than pivot in second half 

- recursively sort first half and then second half of list. 
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Quicksort 
Example.
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Quicksort: partitioning
! Goal: partition a sub-array so that: 
- A[x]<=A[p] for all x<p and A[x]>=A[p] for all x>p 

! 4 8 5 6 3 19 12   pick some element as the pivot 
! rearrange the array so that if the value is less than 

6 it is placed before the 6, if the value is greater 
than the 6 it is placed after the 6. 

! For an array, this might require some swapping 
and shifting.  (See Gaddis text). 

! 4 3 5 6 8 19 12   return 3 as index of pivot (6)
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Quicksort: code
int partition (int [], int, int);  //defined in Gaddis

void quickSort(int array[], int start, int end) {
  if (start < end) {
      // Get the pivot point (and partition the set).
      int pivotPoint = partition(array, start, end);
      // Sort the first sub list.
      quickSort(array, start, pivotPoint - 1);
      // Sort the second sub list.
      quickSort(array, pivotPoint + 1, end);
   }
}
void quickSort (int array[], int size) {
    quickSort(array, 0, size-1);
}

Quicksort Example
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