
!1

Trees & Heaps
Week 12

Gaddis: 20
Weiss: 21.1-3

CS 5301
Fall 2018

Jill Seaman
!2

Tree:
non-recursive definition

! Tree: set of nodes and directed edges
- root: one node is distinguished as the root
- Every node (except root) has exactly exactly one

edge coming into it.
- Every node can have any number of edges going

out of it (zero or more).
! Parent: source node of directed edge
! Child: terminal node of directed edge
! Binary Tree: a tree in which no node can have

more than two children.

!3

Tree Traversals: examples

! Preorder: print node value, process left tree, then
right

! Postorder: process left tree, then right, then print
node value

! Inorder: process left tree, print node value, then
process right tree

+ + a * b c * + * d e f g

a b c * + d e * f + g * +

a + b * c + d * e + f * g !4

Binary Trees: implementation

! Structure with a data value, and a pointer to the
left subtree and another to the right subtree.

! Like a linked list, but two “next” pointers.
! There is also a special pointer to the root node

of the tree (like head for a list).

struct TreeNode {
 int value; // the data
 TreeNode *left; // left subtree
 TreeNode *right; // right subtree
};

TreeNode *root;

!5

Binary Search Trees
! A special kind of binary tree, used for efficient

searching, insertion, and deletion.
! Binary Search Tree property: 

For every node X in the tree:
- All the values in the left subtree are smaller than the

value at X.
- All the values in the right subtree are larger than the

value at X.
! Not all binary trees are binary search trees
! An inorder traversal of a BST shows the values in

sorted order !6

Binary Search Trees: operations
! insert(x)
! remove(x) (or delete)
! isEmpty() (returns bool)
- if the root is NULL

! find(x) (or search, returns bool)
! findMin() (returns <type>)
- Smallest element is found by always taking the left branch.

! findMax() (returns <type>)
- Largest element is found by always taking the right branch.

!7

BST: find(x)

! if we are searching for 15 we are done.
! If we are searching for a key < 15, then we

should search in the left subtree.
! If we are searching for a key > 15, then we

should search in the right subtree.

Algorithm:

! Defined iteratively:

! Can also be defined recursively
!8

BST: find(x)

bool IntBinaryTree::searchNode(int num)
{
 TreeNode *p = root;

 while (p)
 {
 if (p->value == num)
 return true;
 else if (num < p->value)
 p = p->left;
 else
 p = p->right;
 }
 return false;
}

!9

BST: insert(x)
! Algorithm is similar to find(x)
! If x is found, do nothing (no duplicates in tree)
! If x is not found, add a new node with x in place of

the last empty subtree that was searched.

Inserting 13:

! Recursive function
! root is passed by reference to this function

!10

BST: insert(x)

void IntBinaryTree::insert(TreeNode *&nodePtr, int num)
{
 if (nodePtr == NULL) {
 // Create a new node and store num in it,
 // making nodePtr point to it
 nodePtr = new TreeNode;
 nodePtr->value = num;
 nodePtr->left = nodePtr->right = NULL;
 }
 else if (num < nodePtr->value)
 insert(nodePtr->left, num); // Search the left branch
 else if (num > nodePtr->value)
 insert(nodePtr->right, num); // Search the right branch
 // else nodePt->value == num, do nothing, no duplicates
}

!11

BST: remove(x)
! Algorithm starts with finding(x)
! If x is not found, do nothing
! If x is found, remove node carefully.
- Must remain a binary search tree (smallers on left, biggers

on right).
- The algorithm is described here in the lecture, the code is in

the book (and on class website in BinaryTree.zip) in the
makeDeletion(TreeNode *&nodePtr) function.

!12

BST: remove(x)
! Case 1: Node has no right child (or no children)
- Make parent pointer bypass the Node and point to the left child
! Case 2: Node has no left child
- Make parent pointer bypass the Node and point to the right child

Does not matter
if the child is the
left or right child
of deleted node

!13

BST: remove(x)
! Case 3: Node has 2 children
- Find minimum node in right subtree 

—this node cannot have left subtree, or it’s not the minimum
- Move original node’s left subtree to be the left subtree of this

node.
- Make original node’s parent pointer bypass the original node and

point to right subtree

find minimum of 2’s right
subtree (3) and move 2’s left
subtree (1) to be it’s new left.
Remove 2 (make 6 point to 5).

!14

Binary heap data structure

! A binary heap is a special kind of binary tree
- has a restricted structure (must be complete)
- has an ordering property (parent value is

smaller than child values)
- NOT a Binary Search Tree!

! Used in the following applications
- Priority queue implementation: supports

enqueue and deleteMin operations in O(log N)
- Heap sort: another O(N log N) sorting algorithm.

!15

Binary Heap:
structure property

! Complete binary tree: a tree that is
completely filled
- every level except the last is completely filled.
- the bottom level is filled left to right (the leaves

are as far left as possible).

!16

Complete Binary Trees

! A complete binary tree can be easily stored in
an array
- place the root in position 1 (for convenience)

!17

Complete Binary Trees
Properties

! In the array representation:
- put root at location 1
- use an int variable (size) to store number of nodes
- for a node at position i:
- left child at position 2i (if 2i <= size, else i is leaf)
- right child at position 2i+1 (if 2i+1 <= size, else i is leaf)
- parent is in position floor(i/2) (or use integer division)

! There is a heap implementation on the class
website in Heap.zip

!18

Binary Heap:
ordering property

! In a heap, if X is a parent of Y, value(X) is less
than or equal to value(Y).
- the minimum value of the heap is always at the

root.

! First: add a node to tree.
- must be placed at next available location, size+1,

in order to maintain a complete tree.
! Next: maintain the ordering property:
- if x doesn’t have a parent: done
- if x is greater than its parent: done
- else swap with parent, repeat

! Called “percolate up” or “reheap up”
! preserves ordering property

!19

Heap: insert(x)

!20

Heap: insert(x)

! Minimum is at the root, removing it leaves a hole.
- The last element in the tree must be relocated.

! First: move last element up to the root
! Next: maintain the ordering property, start with root:
- if no children, do nothing.
- if one child, swap with parent if it’s smaller than the parent.
- if both children are greater than the parent: done
- otherwise, swap the smaller of the two children with the

parent, and repeat on that child.
! Called “percolate down” or “reheap down”
! preserves ordering property

!21

Heap: deleteMin()

!22

Heap: deleteMin()

