
!1

Sets & Hash Tables
Week 13

Weiss: chapter 20

CS 5301
Fall 2018

Jill Seaman
!2

What are sets?

! A set is a collection of objects of the same
type that has the following two properties:
- there are no duplicates in the collection
- the order of the objects in the collection is

irrelevant. 

! {6,9,11,-5} and {11,9,6,-5} are equivalent. 

! There is no first element, and no successor
of 9.

!3

Set Operations

! Set construction
- the empty set (0 elements in the set)

! isEmpty()
- True, if the set is empty; false, otherwise.

! Insert(element)
- If element is already in the set, do nothing;

otherwise add it to the set
! Delete(element)
- If element is not a member of the set, do nothing;

otherwise remove it from the set. !4

Set Operations

! Member(element): boolean
- True, if element is a member of the set; false,

otherwise
! Union(Set1,Set2): Set
- returns a Set containing all elements of the two

Sets, no duplications.
! Intersection(Set1,Set2): Set
- returns a Set containing all elements common

to both sets.

!5

Set Operations

! Difference(Set1,Set2): Set
- returns a Set containing all elements of the first

set except for the elements that are in common
with the second set.

! Subset(Set1,Set2): boolean
- True, if Set1 is a subset of Set2 (if all elements

of the Set1 are also elements of Set2).
! Equals(Set1,Set2): boolean
- True, if both sets contain exactly the same

elements.
!6

Implementation
! Array of elements implementation
- each element of the set will occupy a position in

the array.
- the member (find) operation will be inefficient,

must use linear search.

- insert must not add duplicates:

class IntSet { 
 int count; //number of elements in the set, set to 0 in constr
 int intSet[100]; //stores the elements in positions 0..count
}

void insert(int x) {
 if (!member(x) && count<100) {
 intSet[count] = x;
 count++;
 }
}

!7

Implementation
! Array of elements implementation: member

! Array of elements implementation: union

- Exercise: implement all of the set operations for
the IntSet.

bool member(int x) {
 for (int i=0; i<count; i++) {
 if (intSet[i]==x)
 return true;
 }
 return false;
}

IntSet operator+(IntSet rhs) {
 IntSet newSet;
 for (int i=0; i<count; i++)
 newSet.insert(intSet[i]);
 for (int i=0; i<rhs.count; i++)
 newSet.insert(rhs.intSet[i]);
 return newSet;
}

!8

What are hash tables?

! A Hash Table is used to implement a set (or
a search table), providing basic operations
in constant time (no loops/recursion):
- insert
- delete (optional)
- find (also called “member”)
- makeEmpty (need not be constant time)

! It uses a function that maps an object in the
set (a key) to its location in the table.

! The function is called a hash function.

41

Using a hash function

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

Empty

4501

Empty

8903

 8

10

 values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

HandyParts company makes
no more than 100 different parts.
But the parts all have four digit
numbers.

This hash function can be used to
store and retrieve parts in an array.

Hash(partNum) = partNum % 100

Use the hash function to place
the element with part number
5502 in the array.

43

Placing elements in the array

Next place part number
6702 in the array.

Hash(partNum) = partNum % 100

 6702 % 100 = 2

But values[2] is already
occupied.

 COLLISION OCCURS

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

 values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

Empty

4501

5502

44

How to resolve the collision?

One way is by linear probing.
This uses the following function

 (HashValue + 1) % 100

repeatedly until an empty location
is found for part number 6702.

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

 values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

Empty

4501

5502

46

Collision resolved

 (Hash(6702) + 1) % 100 = 3

But values[3] is already
occupied.

 (Hash(6702) + 2) % 100 = 4

Part 6702 can be placed at
the location with index 4.

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

 values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

Empty

4501

5502

47

Collision resolved

Part 6702 is placed at
the location with index 4.

Where would the part with
number 4598 be placed using
linear probing?

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

 values

[97]

[98]

[99]

7803

6702

.

.

.

Empty

2298

3699

Empty

4501

5502

!14

Hashing concepts

! Hash Table: (usually an array) where objects
are stored according to their key
- key: attribute of an object used for searching/

sorting
- number of valid keys usually greater than number

of slots in the table
- number of keys in use usually much smaller than

table size.
! Hash function: maps a key to a Table index
! Collision: when two separate keys hash to the

same location

!15

Implementation
! Simple array implementation
- keys are ints, all greater than or equal to 0:

class HashTable {
private:
 int *array; // array of int elements
 // use -1 to indicate empty slot
 int size; // size of array
 int hash (int key) ; // maps key to position in array
public:
 HashTable (int size); //initialize all elements to -1
 ~HashTable();

 bool find(int); //return true if int in table
 void insert (int); //add int to table
 void display(); //show elements in table
};

!16

Implementation
! Simple array implementation:

HashTable::HashTable (int s) {
 size = s;
 array = new int[size]; //dynamic allocation
 for (int i=0; i<size; i++) { //set all values to -1
 array[i] = -1;
 }
}

int HashTable::hash(int key) {
 return key % size; //maps keys to array position
}

void HashTable::insert (int element) {
 int index = hash(element); //linear probing, if not at index
 while (array[index]!=-1 && array[index] != element) {
 index = (index+1)%size;
 }
 array[index] = element; //puts element at first open slot
}

!17

Collision Resolution:
Linear Probing

! Insert: When there is a collision, search
sequentially for the next open slot (-1)
- Put the value in the table at that position

! Find: if the key is not at the hashed location,
keep searching sequentially for it.
- if it reaches an open slot (-1), the key is not found

! Remove: if the key is not at the hashed location,
keep searching sequentially for it.
- if the key is found, set the status to -1

! Problem: Removing an element in the middle of
a chain. The Find method needs to know to
keep searching to the end of the chain.

!18

Collision Resolution:
Separate chaining

! Use an array of linked lists for the hash table
! Each linked list contains all objects that hashed to that

location
- no collisions

Hash function is still:
h(K) = k % 10

!19

Implementation
! Array of linked lists implementation
- The data structure:

class ChainedTable {
private:
 static const int SIZE = 10;
 struct Node {
 int key;
 node *nextNode;
 };
 Node* table[SIZE]; //array of pointers to Nodes
 int hash (int key) ; // maps key to position in array

public:
 ChainedTable(); //inits all pointers in array to NULL
 bool find(int); //return true if int in table
 void insert (int); //add int to table
 . . .
};

!20

Separate Chaining
! To insert a an object:
- compute hash(k)
- if the object is not already in the list at that location, insert the

object into the list.
! To find an object:
- compute hash(k)
- search the linked list there for the key of the object

! To delete an object:
- compute hash(k)
- search the linked list there for the key of the object
- if found, remove it

