The Software Development Process

Jill Seaman
CS 1428
Spring 2018

Software is usually developed in a process involving the following stages:

• Analysis and specification
• Design
• Implementation
• Testing and debugging
• Maintenance

Analysis and Specification

• Analyze the Problem: Figure out exactly the problem to be solved. Try to understand it as much as possible.

• Determine Specifications: Describe exactly what your program will do.
 - Don’t worry about how the program will work, but what it will do.
 - This includes describing the inputs, outputs, and how they relate to one another.

Design

Create a Design:

• Formulate the overall structure of the program.
• This is where the how of the program gets worked out.
• You choose or develop your own algorithm that meets the specifications.
Implementation

Implement the Design:
- Translate the design into a computer language.
- In this course we will use C++.

Testing and Debugging

Test/Debug the Program:
- Try out your program to see if it worked.
- If there are any errors (bugs), they need to be located and fixed. This process is called debugging.
- Your goal is to find errors, so try everything that might “break” your program!

Maintenance

Maintain the Program:
- Continue developing the program in response to the needs of your users.
- In the real world, most programs are never completely finished – they evolve over time.

Example Program: Temperature Converter

- Analysis – the temperature is given in Celsius, user wants it expressed in degrees Fahrenheit.
- Specification:
 - Input – temperature in Celsius
 - Output – temperature in Fahrenheit
 - Output = 9/5(input) + 32
Example Program: Temperature Converter

• Design:
 - Input, Process, Output (IPO)
 - Prompt the user for input (Celsius temperature)
 - Process it to convert it to Fahrenheit using \(F = \frac{9}{5}(C) + 32 \)
 - Output the result by displaying it on the screen

Example Program: Temperature Converter

• Before we start coding, let’s write a rough draft of the program in pseudocode
• Pseudocode is precise English that describes what a program does, step by step.
• Using pseudocode, we can concentrate on the algorithm rather than the programming language.

Example Program: Temperature Converter

• Pseudocode:
 - Input the temperature in degrees Celsius (call it celsius)
 - Calculate fahrenheit as \(\frac{9}{5}\text{celsius} + 32 \)
 - Output fahrenheit
• Now we need to convert this to C++!

Example Program: Temperature Converter

```cpp
// convert.cpp
// A program to convert Celsius temps to Fahrenheit

#include <iostream>
using namespace std;

int main() {
    float celsius, fahrenheit;
    cout << "What is the Celsius temperature? ";
    cin >> celsius;
    fahrenheit = (9/5) * celsius + 32;
    cout << "The temperature is " << fahrenheit << " degrees Fahrenheit." << endl;
    return 0;
}
```
Example Program: Temperature Converter

• Once we write a program, we should test it!

 jillseaman$./a.out
 What is the Celsius temperature? 0
 The temperature is 32 degrees Fahrenheit.

 jillseaman$./a.out
 What is the Celsius temperature? 100
 The temperature is 132 degrees Fahrenheit.

• The first result is correct, but the second case should give 212 degrees fahrenheit. What caused this error?