Functions, Arrays & Structs

Unit 1
Chapters 6-7, 11

CS 2308
Spring 2017
Jill Seaman

Function Definitions

- Function definition pattern:

```plaintext
datatype identifier (parameter1, parameter2, ...) {
  statements . . .
}
```

Where a parameter is:

```plaintext
datatype identifier
```

- `datatype`: the type of data returned by the function.
- `identifier`: the name by which it is possible to call the function.
- `parameters`: Like a regular variable declaration, act within the function as a regular local variable. Allow passing arguments to the function when it is called.
- `statements`: the function's body, executed when called.

Function Call, Return Statement

- **Function call** expression

  ```plaintext
  identifier ( expression1, . . . )
  ```

 - Causes control flow to enter body of function named identifier.
 - `parameter1` is initialized to the value of `expression1`, and so on for each parameter
 - `expression1` is called an **argument**.

- **Return statement**: `return expression;`

  ```plaintext
  inside a function, causes function to stop, return control to caller.
  The value of the return `expression` becomes the value of the function call
  ```

Example: Function

```plaintext
// function example
#include <iostream>
using namespace std;
int addition (int a, int b) {
  int result;
  result=a+b;
  return result;
}
int main () {
  int z;
  z = addition (5,3);
  cout << "The result is " << z <<endl;
}
```

- What are the parameters? arguments?
- What is the value of: `addition (5,3)`?
- What is the output?
Void function

- A function that returns no value:

  ```cpp
  void printAddition (int a, int b) {
    int result;
    result = a + b;
    cout << "the answer is: " << result << endl;
  }
  ```

- use void as the return type.
- the function call is now a statement (it does not have a value)

```cpp
int main () {
  printAddition (5,3);
}
```

Prototypes

- In a program, function definitions must occur before any calls to that function
- To override this requirement, place a prototype of the function before the call.
- The pattern for a prototype:

```cpp
datatype identifier (type1, type2, ...);
```

Arguments passed by value

- **Pass by value**: when an argument is passed to a function, its value is copied into the parameter.
- It is implemented using variable initialization (behind the scenes):
  ```cpp
  int param = argument;
  ```
- Changes to the parameter in the function body do not affect the value of the argument in the call
- The parameter and the argument are stored in separate variables; separate locations in memory.

Example: Pass by Value

```cpp
#include <iostream>
using namespace std;

void changeMe(int);

int main() {
  int number = 12;
  cout << "number is " << number << endl;
  changeMe(number);
  cout << "Back in main, number is " << number << endl;
  return 0;
}

void changeMe(int myValue) {
  myValue = 200;
  cout << "myValue is " << myValue << endl;
}
```

Output:
- myValue is 200
- Back in main, number is 12
- changeMe failed to change the argument!
Parameter passing by Reference

- **Pass by reference**: when an argument is passed to a function, the function has direct access to the original argument (no copying).
- Pass by reference in C++ is implemented using a reference parameter, which has an ampersand (&) in front of it:

  ```
  void changeMe (int &myValue);
  ```

- A reference parameter acts as an **alias** to its argument, it is **NOT** a separate storage location.
- Changes to the parameter in the function **DO** affect the value of the argument

Example: Pass by Reference

```
#include <iostream>
using namespace std;

void changeMe(int &);

int main() {
    int number = 12;
    cout << "number is " << number << endl;
    changeMe(number);
    cout << "Back in main, number is " << number << endl;
    return 0;
}

void changeMe(int &myValue) {
    myValue = 200;
    cout << "myValue is " << myValue << endl;
}
```

Output:
```
number is 12
myValue is 200
Back in main, number is 200
```

Scope of variables

- For a given variable definition, in which part of the program can it be accessed?
 - **Global variable** (defined outside of all functions): can be accessed anywhere, after its definition.
 - **Local variable** (defined inside of a function): can be accessed inside the block in which it is defined, after its definition.
 - **Parameter**: can be accessed anywhere inside of its function body.
- Variables are destroyed at the end of their scope.

More scope rules

- Variables in the same exact scope cannot have the same name
 - Parameters and local function variables cannot have the same name
 - Variable defined in inner block can hide a variable with the same name in an outer block.

```
int x = 10;
if (x < 100) {
    int x = 30;
    cout << x << endl;
}
cout << x << endl;
```

Output: 30 10

- Variables defined in one function cannot be seen from another.
Arrays

- An array is:
 - A series of elements of the same type
 - placed in contiguous memory locations
 - that can be individually referenced by using an index along with the array name.

- To declare an array:
 - datatype is the type of the elements
 - identifier is the name of the array
 - size is the number of elements (constant)

```
int numbers[5];
```

Array initialization

- To specify contents of the array in the definition:

```
float scores[3] = {86.5, 92.1, 77.5};
```
- creates an array of size 3 containing the specified values.

```
float scores[10] = {86.5, 92.1, 77.5};
```
- creates an array containing the specified values followed by 7 zeros (partial initialization).

```
float scores[] = {86.5, 92.1, 77.5};
```
- creates an array of size 3 containing the specified values (size is determined from list).

Array access

- to access the value of any of the elements of the array individually, as if it was a normal variable:

```
scores[2] = 89.5;
```
- scores[2] is a variable of type float

- rules about subscripts (aka indexes):
 - they always start at 0, last subscript is size-1
 - the subscript must have type int
 - they can be any expression

- watchout: brackets used both to declare the array and to access elements.

Arrays: operations

- Valid operations over entire arrays:
 - function call: myFunc(scores, x);

- Invalid operations over entire arrays:
 - assignment: array1 = array2;
 - comparison: array1 == array2
 - output: cout << array1;
 - input: cin >> array2;
 - Must do these element by element, probably using a for loop
Processing arrays

- **Assignment**: copy one array to another

```c
const int SIZE = 4;
int oldValues[SIZE] = {10, 100, 200, 300};
int newValues[SIZE];
for (int count = 0; count < SIZE; count++)
    newValues[count] = oldValues[count];
```

- **Output**: displaying the contents of an array

```c
const int SIZE = 5;
int numbers[SIZE] = {10, 20, 30, 40, 50};
for (int count = 0; count < SIZE; count++)
    cout << numbers[count] << endl;
```

Finding highest and lowest values in arrays

- **Maximum**: Need to track the highest value seen so far. Start with highest = first element.

```c
const int SIZE = 5;
int array[SIZE] = {10, 100, 200, 30};
int highest = array[0];
for (int count = 1; count < SIZE; count++)
    if (array[count] > highest)
        highest = array[count];
cout << "The maximum value is " << highest << endl;
```

Comparing arrays

- **Equality**: Are the arrays exactly the same? Must examine entire array to determine true. Only one counter-example proves it is false.

```c
const int SIZE = 5;
int firstArray[SIZE] = {10, 100, 200, 300};
int secondArray[SIZE] = {10, 100, 201, 300};
bool arraysEqual = true; //assume true, until proven false
for (int count = 0; count < SIZE && arraysEqual; count++)
    if (firstArray[count] != secondArray[count])
        arraysEqual=false;
if (arraysEqual)
    cout << "The arrays are equal" << endl;
else
    cout << "The arrays are not equal" << endl;
```
Arrays as parameters

- In the function definition, the parameter type is a variable name with an empty set of brackets: []
 - Do NOT give a size for the array inside []
    ```c
    void showArray(int values[], int size)
    ```
- In the prototype, empty brackets go after the element datatype.
  ```c
  void showArray(int[], int)
  ```
- In the function call, use the variable name for the array.
  ```c
  showArray(numbers, 5)
  ```
- An array is always passed by reference.

Structures

- A structure stores a collection of objects of various types
- Each element in the structure is a member, and is accessed using the dot member operator.
  ```c
  struct Student {
      int idNumber;
      string name;
      int age;
      string major;
  }
  ```
- Defines a new data type
- Defines new variables
  ```c
  Student student1, student2;
  student1.name = "John Smith";
  Student student3 = {123456,"Ann Page",22,"Math"};
  ```

Structures: operations

- Valid operations over entire structs:
 - assignment: `student1 = student2;`
 - function call: `myFunc(gradStudent,x);`
    ```c
    void myFunc(Student, int); //prototype
    ```
- Invalid operations over structs:
 - comparison: `student1 == student2`
 - output: `cout << student1;`
 - input: `cin >> student2;`
 - Must do these member by member

Arrays of Structures

- You can store values of structure types in arrays.
  ```c
  Student roster[40]; //holds 40 Student structs
  ```
- Each student is accessible via the subscript notation.
  ```c
  roster[0] = student1;
  ```
- Members of structure accessible via dot notation
  ```c
  cout << roster[0].name << endl;
  ```
Arrays of Structures: initialization

- To initialize an array of structs:

```c
struct Student {
    int idNumber;
    string name;
    int age;
    string major;
};

int main()
{
    Student roster[] = {
        {111222,"Jack Spade",18,"Physics"}
    };
}
```

Arrays of Structures

- Arrays of structures processed in loops:

```c
Student roster[40];
//input
for (int i=0; i<40; i++) {
    cout << "Enter the name, age, idNumber and " << "major of the next student: \n";
    cin >> roster[i].name >> roster[i].age >> roster[i].idNumber >> roster[i].major;
}

//output all the id numbers and names
for (int i=0; i<40; i++) {
    cout << roster[i].idNumber << endl;
    cout << roster[i].name << endl;
}
```

Overloaded Functions

- Overloaded functions have the same name but different parameter lists.
- The parameter lists of each overloaded function must have different types and/or number of parameters.
- Compiler will determine which version of the function to call by matching arguments to parameter lists

Example: Overloaded functions

```c
double calcWeeklyPay (int hours, double payRate) {
    return hours * payRate;
}

double calcWeeklyPay (double annSalary) {
    return annSalary / 52;
}
```

```c
int main ()
{
    int h;
    double r;
    cout << "Enter hours worked and pay rate: ";
    cin >> h >> r;
    cout << "Pay is: " << calcWeeklyPay(h,r) << endl;
    cout << "Enter annual salary: ";
    cin >> r;
    cout << "Pay is: " << calcWeeklyPay(r) << endl;
    return 0;
}
```

Output:
Enter hours worked and pay rate: 37 19.5
Pay is: 721.5
Enter annual salary: 75000
Pay is: 1442.31
Default Arguments

- A default argument for a parameter is a value assigned to the parameter when an argument is not provided for it in the function call.
- The default argument patterns:
 - in the prototype:
    ```
    datatype identifier (type1 = c1, type2 = c2, ...);
    ```
 - OR in the function header:
    ```
    datatype identifier (type1 p1 = c1, type2 p2 = c2, ...) {
    ...
    }
    ```
- c1, c2 are constants (named or literals)

Example: Default Arguments

- This function can be called as follows:
  ```
  void showArea (double length = 20.0, double width = 10.0)
  {
    double area = length * width;
    cout << "The area is " << area << endl;
  }
  ```
 - showArea(); ==> uses 20.0 and 10.0
 The area is 200
 - showArea(5.5, 2.0); ==> uses 5.5 and 2.0
 The area is 11
 - showArea(12.0); ==> uses 12.0 and 10.0
 The area is 120