
A Crash Course in Java
Horstmann Chapter 1

Unit 1

CS 3354

Spring 2017

Jill Seaman

1

A simple java class

2

public class Greeter
{
 public Greeter(String aName)
 {
 name = aName;
 }
 public String sayHello()
 {
 return "Hello, " + name + "!";
 }
 private String name;
}

Greeter.java

A driver

3

public class GreeterTester
{
 public static void main(String[] args)
 {
 Greeter worldGreeter = new Greeter("World");
 String greeting = worldGreeter.sayHello();
 System.out.println(greeting);
 }
}

GreeterTester.java

Compilation

• To compile the program enter at the prompt (Unix or Dos) 
(Greeter.java and GreeterTest.java must be in the current directory):

✦javac is the java compiler

✦Greeter.java is automatically compiled since GreeterTester requires it.

✦If successful, this command creates the files Greeter.class and

GreeterTester.class in the same directory

✦ the *.class files contain platform-independent bytecode

✦bytecode is interpreted (executed) by a Java Virtual Machine (JVM), and

will run on a JVM installed on any platform

✦The program does NOT need to be recompiled to run on another platform.

4

javac GreeterTester.java

Execution

• To run the program enter at the prompt (Unix or Dos):

✦This runs the java bytecode on a Java Virtual Machine.

✦The java tool launches a Java application. It does this by starting a Java

runtime environment, loading the specified class, and invoking that class's
main method.

✦The main method must be declared public and static, it must not return
any value, and it must accept a String array as a parameter.

5

workspace jill$ java GreeterTester
Hello World!
workspace jill$

Java Platform

• a bundle of related programs that allow for developing and running
programs written in the Java programming language

• two distributions:

✦Java Runtime Environment (JRE) contains the part of the Java platform

required to run Java programs (the JVM)

✦Java Development Kit (JDK) is for developers and includes development

tools such as the Java compiler, Javadoc, Jar, and a debugger.

6

Editions of Java

• Different editions of java target different application environments

✦Java Platform, Micro Edition (Java ME) — targeting environments with

limited resources.

✦Java Platform, Standard Edition (Java SE) — targeting workstation

environments.

✦Java Platform, Enterprise Edition (Java EE) — targeting large distributed

enterprise or Internet environments.

• Each edition offers slightly different libraries (APIs) suited for the
given environment.

• API: Application Programming Interface: the specification of the
interface.

7

Releases of Java

• Different releases of Java

✦JDK 1.0 (1996) Codename: Oak

✦JDK 1.1 (1997)

✦J2SE 1.2 (1998)

✦J2SE 1.3 (2000)

✦J2SE 1.4 (2002)

✦J2SE 5.0 (2004) (1.5)

✦Java SE 6 (2006) (1.6)

✦Java SE 7 (2011) (1.7)

✦Java SE 8 (2014) (1.8) (I have this one)

8

Principles

• There were five primary goals in the creation of the Java language:

✦It should be "simple, object-oriented and familiar"

✦It should be "robust and secure"

✦It should be "architecture-neutral and portable"

✦It should execute with "high performance"

✦It should be "interpreted, threaded, and dynamic"

9

Features

• Interesting features of Java

✦Object-oriented: everything is an object

✦Inheritance

✦Polymorphism: can use a subclass object in place of the superclass

✦Garbage collection (dynamic memory allocation)

✦Exception handling: built-in error handling

✦Concurrency: built-in multi-threading

✦Persistence: support for saving objects’ state between executions

✦Platform independence: supports web programming

10

• These are NOT objects

• Size is not machine-dependent, always the same

Primitive types

11

• These functions are from the Math library class

• The parameters are numbers

To call the sqrt function: double y = Math.sqrt(x);

Math functions

12

Control flow in Java (same as C++)
• if-else

• while, do-while, and for

• break and continue

• switch statement like C++

• statement can be multiple statements inside braces { }

13

if(Boolean-expression)
 statement
else
 statement

if(Boolean-expression)
 statement

while(Boolean-expression)
 statement

do
 statement
while(Boolean-expression);

for(initialization; Boolean-expression; step)
 statement

Classes in Java, fields
• A Class defines a type with fields (data) and methods (operations)

• Fields can be objects or primitives

• Can create an object of this class using new:

• Fields are accessible using dot operator

14

class ClassA {
 int i;
 Weeble w;
}

ClassA a = new ClassA();

a.i = 11;
a.w = new Weeble();

Classes in Java, methods
• Methods in Java determine the messages an object can receive.

• They are functions that the object can execute on itself

• Syntax is very similar to C++:

• Methods are accessible using dot operator:

15

class ClassA {
 int i;
 Weeble w;
 int mult (int j) {
 return i*j;
 }
}

ClassA a = new ClassA();
a.i = 10;
int x = a.mult(4);

All objects in Java are really references
• Everything is treated as an object, using a single consistent syntax.

• However, the identifier you manipulate is actually a “reference” to

an object (implemented as a pointer):

• Can assign null to object variables: 

• Dereferencing null causes a NullPointerException

• Note: references are on the run-time stack, objects are in heap.
16

Greeter s; //this is just a ref, a pointer

s = null;

s.setName(“Dave”);

Objects in Java versus objects in C++:
• Given this code in Java:

• This is the equivalent code in C++:

• You cannot translate the following C++ code to Java, because Java
does not have statically allocated objects.

17

ClassA a;
a.i = 10;
int x = a.mult(4);

ClassA a = new ClassA();
a.i = 10;
int x = a.mult(4);

ClassA *a = new ClassA;
a->i = 10;
int x = a->mult(4);

Assignment in Java
• Assignment in Java is like in C++

✦For primitive types, values are copied

✦For objects, the reference is copied so both variables refer to the same
object.

✦changes to a will also affect b

18

Weeble b = new Weeble();
Weeble a;
a = b; // a and b refer to same Weeble object

int a;
a = 10;

Operators in Java
• Mathematical operators, same as C++

✦integer division truncates, like C++

• Relational operators yield boolean result (not int)

✦== over objects tests the value of the reference (the pointers)

• Logical operators

• String + is concatenation: 
this yields a new String object:

19

< > <= >= == !=

+ - * / %
++ --
+= -= *= /= %=

&& || !

“abc” + “def”

“abcdef”

this

• The this keyword—which can be used only inside a method—
produces a reference to the object the method has been called on.

✦ in Java it’s a reference (not a pointer)

• It can also be used to call a constructor from another constructor
(Unlike C++):

20

class ClassA {
 int i;
 void seti(int i) {
 this.i = i;
 }
}

class ClassA {
 int i;
 ClassA(int i)
 { this.i = i; }
 ClassA()
 { this(0); } // calls ClassA(0)
}

ClassA x = new ClassA();
x.seti(10);
//inside seti, “this” is equal to x

Parameter Passing in Java
• Java uses call by value:

✦For primitive types, values are copied to the function parameter

✦For objects, the address of the object is copied to the function parameter

• Objects can be changed by calling mutators on the parameter

21

public class Greeter {
 String name;
 public void Greeter(String name) {  
 this.name = name;  
 }
 public void copyNameTo(Greeter other) {
 other.name = this.name; //changes name of other
 }
}

Greeter worldGreeter = new Greeter("World");
Greeter dave = new Greeter("Dave");
worldGreeter.copyNameTo(dave); //now both are “World”

Parameter Passing in Java
• a method can never update the contents of a variable that is

passed as a parameter:

22

public class Greeter {
 public void copyLengthTo(int n) {
 n = name.length();
 }
 public void copyGreeterTo(Greeter other) {
 other = new Greeter(name);
 }
. . .
}

int length = 0;
Greeter worldGreeter = new Greeter("World");
Greeter dave = new Greeter("Dave");
worldGreeter.copyLengthTo(length); //does not change length
worldGreeter.copyGreeterTo(dave); //does not change dave

Packages
• Classes can be grouped into packages.

• Package names are dot-separated identifier sequences

• You place a class inside a package by adding a package statement
at the beginning of the file:

✦Other classes (outside of myPackage) wanting access to SmallBrain must
import myPackage, or fully specify it: myPackage.SmallBrain.

23

package myPackage;
public class SmallBrain { … }

java.util
javax.swing
com.sun.misc

package anotherPackage;
import myPackage.*;
. . .
SmallBrain a; // or myPackage.SmallBrain

Packages and Directories

• Package names must match subdirectory names and structure.

• To put your classes in a package called xx.myPackage:

✦Declare the package on the first line of each java file

✦Put all the files in package xx.myPackage in the following directory: 
...src/xx/myPackage

✦Make src the current directory:

✦To compile:

✦To run:

24

package xx.myPackage;
import
public class SmallBrain {

javac xx/myPackage/*.java

java xx.myPackage.ClassA

Assuming ClassA contains a main method

cd ...src

Accessing classes from libraries
• In Java libraries, elements are grouped into packages

• Packages have dotted path names (like internet domains)

• To use a class from a package, import the qualified class name:

• Or import the entire package:

• You do not need to import classes from java.lang (like String or
Math). These are imported automatically.

25

import java.util.ArrayList;

import java.util.*;

Java library documentation
• Online documentation for Java 1.8 API

See the Gap 1 handout/exercise.

26

http://docs.oracle.com/javase/8/docs/api/

String

• The String class represents character strings.

• string literals like "abc" are implemented as instances of this class.

• strings are immutable (no methods to change their contents).

• Methods (many more available):

✦length() Returns the length of this string.

✦charAt(int i) Returns the char value at the specified index (but this cannot

appear on the left of an assignment, you cannot change the string).

✦ + for string concatenation (returns a new string)

27

String str = “abc”;
for (int i=0; i<str.length(); i++)
 System.out.println(str.charAt(i));
System.out.println(str+”def”);

String: substring and equals

• substring(i,e) computes a sub-piece of a string.

✦i is the position of the first character that you want to include in the

substring and e is the first character that you no longer want to include.

✦"Hello".substring(1, 3) is the string "el"

• Since strings are objects, you need to use the equals method to
compare whether two strings have the same contents.

✦The previous comparison fails because it compares the references. The
references point to equivalent contents, but == compares the
references. .equals compares the contents the references point to.

28

String str = “el”;
String txt = “Hello”.substring(1,3);
if (str.equals(txt)) … //OK, this is true
if (str==txt) … //NO this is false

toString

• toString is a method that is defined by default for every class

• The String value returned should represent the data in the object.

• This makes it easy to output an object to the screen. The following

are generally equivalent:

• You can override the default definition by redefining toString for
your class.

29

System.out.println(w);

public String toString();

System.out.println(w.toString());

class ClassA {
 private int i;
 private double x;
 public String toString() {
 return (“i: “+i+” x: “+x);
 }
}

Wrapper classes

• Wrapper classes convert primitive type values to objects

✦Byte, Short, Integer, Float, Double, Boolean, etc.

✦In the java.lang package.

• Allows use of primitive values where Objects are required.

• Provides conversion functions between types.

• compare() and compareTo(Integer) are defined as well.

30

int i = 50;
Integer mm = new Integer(i);
String k = mm.toString(); // k is now “50”
String k1 = Integer.toString(50); // the static toString method

int j = mm.intValue() + 5; // j is now 55
int y = Integer.parseInt(k); // converts string to int

Reading from the screen (Input)

• Scanner class (in java.util)

✦Allows the user to read values of various types from a stream of

characters.

✦There are two constructors that are particularly useful: one takes an

InputStream object as a parameter and the other takes a FileReader object
as a parameter.

31

Scanner in = new Scanner(System.in);
// System.in is the InputStream associated with the keyboard

Scanner inFile = new Scanner(new FileReader(“myFile"));
// Creates a Scanner for a text file called myFile

Reading from the screen (Input)

• Useful Scanner methods:

✦int nextInt() Returns the next token as an int. If the next token is not an

integer, InputMismatchException is thrown.

✦long nextLong() Similar

✦float nextFloat() Similar

✦double nextDouble() Similar

✦String nextLine() Returns the rest of the current line, excluding any line

separator at the end.

✦boolean hasNextInt() Returns true if the next token in this scanner's input

can be interpreted as an int value using the nextInt() method.

✦hasNextLong(), hasNextFloat(), etc.

32

Reading from the screen (Input)

• Example using a Scanner with System.in:

33

Scanner sc = new Scanner(System.in);
System.out.println("Enter the quantity: ");
int i = sc.nextInt();
System.out.println("Enter the price: ");
double price = sc.nextDouble();
System.out.println("Enter the name: ");
sc.nextLine(); //skip to end of previous line, after price
String name = sc.nextLine();

Writing to the screen (Output)

• System.out (in java.lang)

✦System.out is a PrintStream, used to print characters.

✦A PrintStream provides the ability to print representations of various

data values conveniently.

• println(x) and print(x)

✦Methods of PrintStream (see API website for details)

✦Overloaded to print all the various data types.

✦Often uses the default toString() method of the wrapper classes.

- for example, Integer.toString(int i) to print an int

✦The difference between print() and println() is that the latter adds a
newline when it’s done.

34

Writing to the screen: Formatting

• DecimalFormat class, used to format decimal numbers

✦DecimalFormat(String pattern) Creates a DecimalFormat using

the given pattern.

✦format(x) produces a string by formatting an item (x) according to the

objects pattern.

✦The following characters have special meaning in a pattern (other

characters are taken literally, appearing in the string unchanged).

35

0 digit (left-padded with zeros)

digit, zero shows as absent (no 0 padding)

. decimal separator
, Grouping separator

E Separates mantissa and exponent in scientific notation

% Multiply by 100, show as percent

Formatting example

36

import java.text.*;

class FormatOut {
 public static void main(String args[]) {
 int [] iArray = {1, 12, 123};
 float [] fArray = {1.1F, 10.12F, 100.123F};
 double [] dArray = {1.1, 10.12, 100.1234, 1000.1239};

 DecimalFormat dfi = new DecimalFormat("#00");
 DecimalFormat dff = new DecimalFormat("#00.00 float");
 DecimalFormat dfd = new DecimalFormat("#000.000");

 for (int i = 0; i < iArray.length; i++)
 System.out.println(dfi.format(iArray[i]));

 for (int i = 0; i < fArray.length; i++)
 System.out.println(dff.format(fArray[i]));

 for (int i = 0; i < dArray.length; i++)
 System.out.println(dfd.format(dArray[i]));
 }
}

• Output from running FormatOut:

Formatting example

37

01
12
123
01.10 float
10.12 float
100.12 float
001.100
010.120
100.123
1000.124

ArrayList class
• A Generic class: ArrayList<E> contains objects of type E

• Must specify the element types (base type) when declaring:

✦The base type must be a class (NOT primitive type).

• Basic methods:

✦add(E x) Appends the specified element to the end of this list. Starts at

position 0, increases size by 1.

✦get(int i) Returns the element at the specified position in this list.

✦set(int i, E x) changes element in position i to x.

✦size() Returns the number of elements in this list (not the capacity).

38

ArrayList<String> list = new ArrayList<String>();

ArrayList class
• ArrayList increase in size as needed automatically

• These methods insert and remove from the middle:

✦add (int i, E x) inserts x at position i, after shifting all the elements from i to
the end up by one location

✦remove(int i) Removes the element at the specified position in this list, and
closes the gap.

• ArrayList can be iterated over using a “for-each” loop:

✦General syntax is: for (BaseType var : arrayList) stmt

39

ArrayList<String> list = new ArrayList<String>();
//Some code here to fill the list
for (String s : list)
 System.out.println(s); //does this for each String in list

Arrays in Java
• Arrays can store objects of any type, including primitives.

• Array length is fixed, array variable is a reference (an object)

• Arrays have bounds checking

✦unable to access memory outside its block (using the array): runtime error

• Arrays are objects

✦member length returns size of array

✦can access elements using [x]

40

int[] c = { 0, 1, 4, 9, 16 }; //constructs+initializes
for(int i = 0; i < c.length; i++) //can also use foreach loop
 System.out.println(c[i]);

int[] numbers = new int[10]; //all initialized to 0

static keyword
• When a field or method is declared static, it means that data or

method is not tied to any particular object instance of that class

• Instances of the class share the same static fields

• Static methods may not access non-static fields

• Static fields and methods may be accessed without instantiating
any objects by using the class name, or from an existing object.

41

StaticFun.i = 100;
StaticFun sf = new StaticFun();
sf.incr();

class StaticFun {
 static i = 11;
 static void incr () { i++; }
}

The final keyword

• Java’s final keyword has slightly different meanings depending on
the context, but in general it says “This cannot be changed.”

• Data

✦To create named constants (primitive type):

✦Use static so the class does not recreate it for each instance

✦If you create an object that is final, it only means the reference cannot

change, but the contents of the object itself could

✦Cannot assign v2 to something else, but you could change its fields

42

public static final int VAL_THREE = 39;

private final Value v2 = new Value(22);

v2.setValue(25);

Javadoc
• javadoc: a tool to extract comments embedded in source code and

put them in a useful form:

✦HTML files, viewable from a browser.

✦Can regenerate the HTML files whenever the comments/code change.

• Uses a special comment syntax to mark the documentation inside
the source code

• javadoc also pulls out the class name or method name that adjoins
the comment(s).

• html files are similar to the online Java API documentation.

• Purpose is to document the public interface: the class names and

public methods.

43

Javadoc syntax
• The javadoc commands occur only within /** … */ comments

✦Note the initial double asterisks, normal comments have only one.

• Each javadoc comment must precede the class definition, instance
variable definition or method definition that it is documenting.

/** A class comment */
public class DocTest {
 /** A variable comment */
 public int i;
 /** A method comment */
 public void f() {}
}

• The javadoc comments may contain the following:

✦embedded html code, especially for lists and formatting code snippets

✦“doc tags”: special keywords that begin with @ that have special meaning

to the javadoc tool.
44

Javadoc tags
• This table summarizes the more commonly used tags.

45

*required for this class 
 (use a separate @author tag for each author)

*
*

*

46

/**
 * A Container is an object that contains other objects.
 * @author Trevor Miller
 * @version 1.2
 * @since 0.3
 */
public abstract class Container {
 /**
 * Create an empty container.
 */
 protected Container() { }
 /**
 * Return the number of elements contained in this container.
 * @return The number of objects contained
 */
 public abstract int count();
 /**
 * Accept the given visitor to visit all objects contained.
 * @param visitor The visitor to accept
 */
 public abstract void accept(final Visitor visitor);
 /**
 * Determine whether this container is empty or not.
 * @return <CODE>true</CODE> if the container is empty:
 * <CODE>count == 0</CODE>, <CODE>false</CODE> otherwise
 */
 public boolean isEmpty() {
 return (this.count() == 0);
 }
}

Javadoc: generating the html files
• Use the javadoc command (from the JDK) to produce the html files:

javadoc -d api Container.java

• The -d option indicates a target directory for the html files

• Generates multiple .html files

• click on api/Container.html to see the result. 
 
 
 

• For more details on javadoc, follow the javadoc links on the class
website “readings” page. 

47

Object serialization

• A process of transforming an object into a stream of bytes, to be
saved in a file.

• Object serialization allows you to implement persistence:

• Persistence: when an object’s lifetime is not determined by whether

a program is executing; the object exists in between invocations of
the program.

• The object’s class must implement the Serializable interface.

✦If not, you get an exception: java.io.NotSerializableException: theClass

✦Note: there are no required methods to override

✦The field object types must be serializable too.

48

public class Circle implements Serializable { ...

Object serialization: streams

• Java provides two object streams for serialization.

✦These are both initialized given a FileOutputStream and a FileInputStream

(respectively). The example shows how to initialize these given a file name.

•ObjectOutputStream

✦The writeObject() method writes an object to the output stream,
converting all the data in the object to bytes.

✦All the field objects in the class must also be serializable

•ObjectInputStream

✦The readObject() method reads an object from the input stream.

✦The object was most likely written using writeObject

✦You must cast the result to the correct object.

49

Serialization example: ZStudent.java

50

import java.io.*;

// Simple student class
class ZStudent implements Serializable {
 int no;
 String first, mid, last; // Note these are serializable objects
 float ave;

 ZStudent() {}; // default constructor
 ZStudent(int no, String first, String mid, String last, float ave) {
 this.no = no;
 this.first = first;
 this.mid = mid;
 this.last = last;
 this.ave = ave;
 }

 public String display() {
 return (no + " " + first + " " + mid + " " + last + " " + ave);
 }
}

Serialization example: ObjFIO.java

51

import java.io.*;
import java.util.*;

class ObjFIO {
 public static void main(String[] args) {
 ArrayList<ZStudent> zstudents = new ArrayList<ZStudent>();
 zstudents.add(new ZStudent(50, "Blue ", "M", "Monday ", 50.0F));
 zstudents.add(new ZStudent(100, "Gray ", "G", "Tuesday ", 60.0F));
 zstudents.add(new ZStudent(150, "Green", "G", "Wednesday", 70.0F));
 zstudents.add(new ZStudent(200, "Pink ", "P", "Thursday ", 80.0F));
 zstudents.add(new ZStudent(300, "Red ", "R", "Friday ", 90.0F));

 //the following code writes the objects to the file:
 try {
 FileOutputStream fos = new FileOutputStream("zStudentFile");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(zstudents); //ArrayList & contents are serializable
 fos.close();
 } catch (IOException e) {
 System.out.println("Problem with file output");
 }

Serialization example: ObjFIO.java cont.

52

 //the following code reads the objects from the file, then outputs
 try {
 FileInputStream fis = new FileInputStream("zStudentFile");
 ObjectInputStream ois = new ObjectInputStream(fis);

 ArrayList<ZStudent> students =
 (ArrayList<ZStudent>)ois.readObject(); // explicit cast reqd
 //demonstrate successful read:
 for (ZStudent zs : students)
 System.out.println(zs.display());

 fis.close();
 } catch (FileNotFoundException e) {
 System.out.println(“Cannot find datafile.”);
 } catch (IOException e) {
 System.out.println(“Problem with file input.”);
 } catch (ClassNotFoundException e) {
 System.out.println(“Class not found on input from file.”);
 }
 }
}

• Output from the example:

• Why the try/catch syntax?

- some of the library methods/constructors “throw exceptions” when they

encounter a problem they can’t resolve.

- If you call the method, you must catch the exceptions in catch blocks, and

include code that indicates how you want the corresponding problem to
be resolved.

- we will discuss exception handling in more detail in the inheritance unit.

Serialization example

53

50 Blue M Monday 50.0
100 Gray G Tuesday 60.0
150 Green G Wednesday 70.0
200 Pink P Thursday 80.0
300 Red R Friday 90.0

