
Java - Inheritance/Polymorphism/Interfaces,
Collections and Exceptions
Horstmann chapters 4.1-5 & 6.1
Horstmann chapters 1.8, 1.11 and 8.3

Unit 2

CS 3354

Spring 2017

Jill Seaman

1

Interface, 3 definitions used in this class

• (from cs2308): the mechanism that code outside the object uses to
interact with the object; the object’s public member functions.

• (graphical) user interface (sometimes shortened to “interface”): the
means by which the user and a computer system interact, in
particular the use of input devices and software.

• Java Interface: a reference type, similar to a class, that contains
constants and/or method signatures (methods with empty bodies).

2

Goal: to separate the interface
from the implementation

Example: The Icon interface in Java

• You can use javax.swing.JOptionPane to display message:

✦ Note the “i” icon on the left:

• To specify an arbitrary image file:

3

JOptionPane.showMessageDialog(null, "Hello, World!");

JOptionPane.showMessageDialog( 
 null,  
 "Hello, World!",  
 "Message",  
 JOptionPane.INFORMATION_MESSAGE,  
 new ImageIcon("globe.gif"));

Example: The Icon interface in Java

• What if we want to draw the image using library methods?  
Here is the declaration of the showMessageDialog method:

• You can use any class that implements the javax.swing.Icon
interface type:

4

public interface Icon {
 int getIconWidth();
 int getIconHeight();
 void paintIcon(Component c, Graphics g, int x, int y);
}

public static void showMessageDialog( 
 Component parent,  
 Object message,  
 String title,  
 int messageType,  
 Icon anIcon);

Java Interfaces

• In the Java programming language, an Interface is a form or
template for a class: the methods do no have implementations
(they are like C++ prototypes).

• The methods are implicitly public.

• An interface may contain fields, but these are implicitly static and

final (named constants).

• A class implements the interface type by (a) providing an
implements clause and (b) supplying implementations for the
methods that are declared in the interface type.

• An interface can be used as a type (for variables, parameters, etc)

✦Java permits an object instance of a class that implements an Interface to

be assigned to a variable or parameter of that type.
5

Example: A new class that implements Icon

• The javax.swing.ImageIcon class implements Icon (see the api)

• Let’s design a class MarsIcon that implements the Icon interface

type (see Horstmann for imports and detailed explanation):

6

public class MarsIcon implements Icon {
 public MarsIcon(int aSize) {
 size = aSize;
 }
 public int getIconWidth() { return size; }
 public int getIconHeight() { return size; }

 public void paintIcon(Component c, Graphics g, int x, int y) {
 Graphics2D g2 = (Graphics2D) g;
 Ellipse2D.Double planet = new Ellipse2D.Double(x, y, size, size);
 g2.setColor(Color.RED);
 g2.fill(planet);
 }

 private int size;
}

Note it provides definitions

for the three Icon methods

Example: Using MarsIcon in showMessageDialog

• This driver uses our MarsIcon class to make the dialog:

7

import javax.swing.*;

public class IconTester
{
 public static void main(String[] args)
 {
 JOptionPane.showMessageDialog(
 null,
 "Hello, Mars!",
 "Message",
 JOptionPane.INFORMATION_MESSAGE,
 new MarsIcon(50));
 System.exit(0);
 }
}

I got this when I ran

the code on my mac:

Class diagram
• the Icon interface type and the classes that implement it:

✦ A———|> B means class A implements interface B

✦ A———>B means class A uses class/interface B

8

Polymorphism

• Upcasting:

✦Permitting an object of a class type to be treated as an object of any

interface type it implements:

• Polymorphism:

✦The ability of objects belonging to different class types to respond to

method calls of the same name, but with an appropriate type-specific
behavior.

✦It allows many types (implementing the same Interface) to be treated as if
they were one type, and a single piece of code to work on all those
different types equally, yet getting type-specific behavior for each one.

9

Icon x = new MarsIcon(50);

Polymorphism Example (using an Interface):
• Wind, Stringed and Percussion are Instruments with a play(String)

method.

10

public interface Instrument {
 void play(String n);
}

public class Wind implements Instrument {
 public void play(String n) {
 System.out.println("Wind.play() " + n);
 }
}
public class Stringed implements Instrument {
 public void play(String n) {
 System.out.println("Stringed.play() " + n);
 }
}
public class Percussion implements Instrument {
 public void play(String n) {
 System.out.println("Percussion.play() " + n);
 }
}

Polymorphism Example continued

11

public class Music {
 public static void tune(Instrument i) {
 i.play("Middle C");
 }
 public static void main(String[] args) {
 Wind flute = new Wind();
 Stringed violin = new Stringed();
 tune(flute); //upcasting to Instrument
 tune(violin); //upcasting to Instrument
 }
}

Wind.play() Middle C
Stringed.play() Middle C

What is output?

Polymorphism:

in tune, i is an Instrument, but it calls the play method

based on the specific type of the object it receives.

What if we didn’t have polymorphism?
• We could overload tune to work for each type of Instrument

• If we add a new instrument, we have to add a new tune function

12

public class Music {
 public static void tune(Wind i) {
 i.play("Middle C");
 }
 public static void tune(Stringed i) {
 i.play("Middle C");
 }
 public static void tune(Percussion i) {
 i.play("Middle C");
 }
 public static void main(String[] args) {
 Wind flute = new Wind();
 Stringed violin = new Stringed();
 tune(flute); // No upcasting necessary
 tune(violin);
 }
}

Wind.play() Middle C
Stringed.play() Middle C

Output:

But we do have upcasting and polymorphism:
• We can get the same effect with just one tune method.

• Add a snaredrum Percussion object and call tune on it.

13

public class Music {
 public static void tune(Instrument i) {
 i.play("Middle C");
 }
 public static void main(String[] args) {
 Wind flute = new Wind();
 Stringed violin = new Stringed();
 Percussion snaredrum = new Percussion();
 tune(flute); // upcasting
 tune(violin);
 tune(snaredrum); }
}

Wind.play() Middle C
Stringed.play() Middle C
Percussion.play() Middle C

Output: polymorphism

Polymorphism in JOptionPane.showMessageDialog

• Consider implementing the showMessageDialog method:

• The width of the dialog box depends on the width of anIcon.

• But anIcon could refer to a MarsIcon or to an ImageIcon, how

do we call the proper method?

• Since the type of anIcon must be a class that implements Icon,

we know it must have a getIconWidth() method that returns the
width of the Icon, so we can use that: anIcon.getIconWidth()

• During run-time, the Java interpreter determines the class type of
the object anIcon is referring to, and uses the implementation of
getIconWidth from that class.

14

public static void showMessageDialog(. . . Icon anIcon);

Implementing the Java Comparable Interface

• Assume you want to sort an ArrayList of custom objects (instances
of some class you created).

• The following static method is available in the Java API:

• All elements in the ArrayList must implement the
java.lang.Comparable<T> interface:

15

int compareTo(T o); //T is your custom class

The call object1.compareTo(object2) is expected to return a negative
number if object1 should come before object2, zero if the objects are
equal, and a positive number otherwise

void Collections.sort(List<T> list) // for ArrayLists

Sorting with Comparable, example

16

import java.util.*;

public class Student implements Comparable<Student> {
 private String name;
 private String major;
 private int idNumber;
 private float gpa;
 public Student(String name, String major,
 int idNumber, float gpa) {
 this.name = name; this.major = major;
 this.idNumber = idNumber; this.gpa = gpa;
 }
 public String getName() { return name; }
 public float getGpa() { return gpa; }
 public String toString() {
 return "Student: " + name + " " +major + " "
 + idNumber + " " + gpa;
 }
 public int compareTo(Student rhs) {
 return name.compareTo(rhs.name);
 }

compareTo is already
defined in String, so
we can reuse it.

This will sort by name

Sorting with Comparable, example (p2)

17

 public static void main(String[] args) {
 ArrayList<Student> a = new ArrayList<Student>();
 a.add(new Student("Doe, J”,”Math",1234,3.6F));
 a.add(new Student("Carr, M”,”CS",1000,2.7F));
 a.add(new Student("Ames, D”,"Business",2233,3.7F));
 System.out.println("Before: ");
 for (Student s : a)
 System.out.println(s);
 Collections.sort(a);
 System.out.println("After: ");
 for (Student s : a)
 System.out.println(s);
 }

Before:
Student: Doe, J Math 1234 3.6
Student: Carr, M CS 1000 2.7
Student: Ames, D Business 2233 3.7
After:
Student: Ames, D Business 2233 3.7
Student: Carr, M CS 1000 2.7
Student: Doe, J Math 1234 3.6

Output:

Implementing the Java Comparator Interface

• Assume you want to sort the ArrayList of students by gpa, but you
don’t want to reimplement compareTo.

• The following static method is available in the Java API:

• The java.lang.Comparator<T> interface:

18

int compare(T obj1, T obj2); //T is your custom class

Compares obj1 to obj2 for order. Returns a negative number, zero, or a
positive number depending on whether obj1 is less than, equal to, or
greater than obj2 in the particular sort order

void Collections.sort(List<T> list, Comparator<T> c)

Sorting with Comparator, sort by gpa

19

public class StudentByGpa implements Comparator<Student> {
 public int compare(Student lhs, Student rhs) {
 float lhsGpa = lhs.getGpa();
 float rhsGpa = rhs.getGpa();
 if (lhsGpa < rhsGpa) return -1;
 if (lhsGpa == rhsGpa) return 0;
 return 1;
 }
}

• To sort by gpa, define a new class that implements
Comparator as follows:

public class StudentByName implements Comparator<Student> {
 public int compare(Student lhs, Student rhs) {
 return lhs.getName().compareTo(rhs.getName());
 }
}

• To sort by name, define another Comparator as follows:

Sorting with Comparator, example (p2)

20

 public static void main(String[] args) {
 ArrayList<Student>a = new ArrayList<Student>();
 a.add(new Student("Doe, J”,”Math",1234,3.6F));
 a.add(new Student("Carr, M”,”CS",1000,2.7F));
 a.add(new Student("Ames, D”,"Business",2233,3.7F));
 System.out.println("Before: ");
 for (Student s : a)
 System.out.println(s);
 Comparator<Student> comp = new StudentByGpa();
 Collections.sort(a, comp);
 System.out.println("After: ");
 for (Student s : a)
 System.out.println(s);
 }

Before:
Student: Doe, J Math 1234 3.6
Student: Carr, M CS 1000 2.7
Student: Ames, D Business 2233 3.7
After:
Student: Carr, M CS 1000 2.7
Student: Doe, J Math 1234 3.6
Student: Ames, D Business 2233 3.7

Output:

Anonymous objects and classes

• Anonymous objects: no need to name an object used only once:

• Anonymous classes: no need to name a class used only once:

• The right-hand side expression (1) defines a temporary class with
no name that implements Comparator<Student>, and  
(2) constructs one object of that class (note keyword “new”).

21

Collections.sort(a, new StudentByGpa());

Comparator<Student> comp = new
 Comparator<Student>() {
 public int compare(Student lhs, Student rhs) {
 return lhs.getName().compareTo(rhs.getName());
 }
 };

Anonymous classes

• Anonymous classes can be returned by a function:

22

public class Student {
. . .
public static Comparator<Student> compByName() {
 return new
 Comparator<Student>() {
 public int compare(Student lhs, Student rhs) {
 return lhs.getName().compareTo(rhs.getName());
 }
 };
public static Comparator<Student> compByGpa() {
 return new
 Comparator<Student>() {
 public int compare(Student lhs, Student rhs) {
 return Math.round(lhs.getGpa() - rhs.getGpa());
 }
 };
}

Collections.sort(a, Student.compByGpa());

Inheritance

• A way to reuse code from existing classes by extending an existing
class with new fields and methods

• Classes can inherit attributes and behavior from pre-existing
classes called base classes, superclasses, or parent classes. The
resulting classes are known as derived classes, subclasses or child
classes.

• The relationships of classes through inheritance gives rise to a
hierarchy.

• In Java, each class has exactly one superclass. If none are
specified, then java.lang.Object is the superclass.

• Note: In Java, constructors are NOT inherited.

23

Simple Example of Inheritance

24

public class Cleanser {
 private String s = new String("Cleanser");
 public void append(String a) { s += a; }
 public void dilute() { append(" dilute()"); }
 public void apply() { append(" apply()"); }
 public void scrub() { append(" scrub()"); }
 public String toString() { return s; }
}
public class CleanserTester {
 public static void main(String[] args) {
 Cleanser x = new Cleanser();
 x.dilute(); x.apply(); x.scrub();
 System.out.println(x);
 }
}

Cleanser dilute() apply() scrub()

Output:

toString is a method 
of java.lang.Object

Simple Example of Inheritance

25

public class Detergent extends Cleanser {
 // Change (override) a method:
 public void scrub() {
 append(" Detergent.scrub()");
 super.scrub(); // Call superclass version
 }
 public void foam() { append(" foam()"); } // Added method
}
public class DetergentTester {
 public static void main(String[] args) {
 Detergent x = new Detergent();
 x.dilute(); x.apply(); x.scrub(); x.foam();
 System.out.println(x);
 CleanserTester.main(args);
 }
}

extends is used to

specify the superclass

Cleanser dilute() apply() Detergent.scrub() scrub() foam()
Cleanser dilute() apply() scrub()

Output:

General convention

• Fields are private

✦Not even subclasses should access these directly

• Methods are public

✦This is so other classes, including subclasses can access them.

• Overriding a method:

✦Writing a new instance method in the subclass that has the same signature

as the one in the superclass.

✦Any instance of the subclass will use the method from the subclass

✦Any instance of the superclass will use the method from the superclass

✦The subclass can call the superclass method using “super.method()”

26

Invoking Superclass Fields and Methods

• Cannot access superclass fields if they are private:

• But be careful when calling superclass method:

• Correct:

27

public class Detergent extends Cleanser {
 public String toString() { return “Detergent: “ + s; }
 //ERROR: s is private
}

public class Detergent extends Cleanser {
 public String toString() {return “Detergent: “ + toString(); }
 //ERROR: recursive call!!
}

public class Detergent extends Cleanser {
 public String toString() {
 return “Detergent: “ + super.toString(); }
}

Initialization

• Java automatically inserts calls to the (default) superclass
constructor at the beginning of the subclass constructor.

28

class Art {
 Art() {
 System.out.println("Art constructor");
 }
}
class Drawing extends Art {
 Drawing() {
 System.out.println("Drawing constructor");
 }
}
public class Cartoon extends Drawing {
 public Cartoon() {
 System.out.println("Cartoon constructor");
 }
}
public class CartoonTester {
 public static void main(String[] args) {
 Cartoon x = new Cartoon();
 }
}

Art constructor
Drawing constructor
Cartoon constructor

Output:

So constructors are not

inherited, they are called

from the constructors of

the subclass.

Initialization
• If your class doesn’t have default (no arg) constructors, or if you want to

call a superclass constructor that has an argument, you must explicitly
write the calls to the superclass constructor using the super keyword
and the appropriate argument list

29

class Game {
 int x;
 Game(int i) {
 x = i;
 System.out.println("Game constructor");
 }
}
class BoardGame extends Game {
 BoardGame(int i) {
 super(i);
 System.out.println("BoardGame constructor");
 }
}
public class Chess extends BoardGame {
 Chess() {
 super(11);
 System.out.println("Chess constructor");
 }
}

Access specifiers

• keywords that control access to the definitions they modify

✦public: accessible to all other classes

✦private: accessible only from within the class in which it is defined

✦package (unspecified, default): accessible only to other classes in the

same package

✦protected: accessible to all classes derived from (subclasses of) the class

containing this definition, even if the class is in another package.  
Note: protected also provides package access!!!

• Classes can only be public or unspecified (which is package)

30

java.lang.Object

• some commonly used and/or overridden methods:

✦toString: Returns a string representation of the object. 

You should override this if you want a displayable version of the objects of
your class.

✦equals: Indicates whether some other object is "equal to" this one.  
For your class, it will use ==, unless you override it.

✦clone: Creates and returns a copy of this object.

- Make your class implement Cloneable to use a default version of this method.

- You do not need to override the clone method, but the documentation

recommends that you do (you can just call super.clone()).

31

Polymorphism

• Upcasting:

✦Permitting an object of a subclass type to be treated as an object of any

superclass type.

• Polymorphism:

✦The ability of objects belonging to different types to respond to method

calls of the same name, each one according to an appropriate type-
specific behavior.

✦It allows many types (derived from the same superclass) to be treated as if
they were one type, and a single piece of code to work on all those
different types equally, yet getting type-specific behavior for each one.

32

Cleanser x = new Detergent();

Very similar to polymorphism with Interfaces

Polymorphism Example (using Inheritance):
• Wind, Stringed and Percussion inherit from Instruments

33

public class Instrument {
 void play(String n) {
 System.out.println("Instrument.play() " + n);
 }
}
public class Wind extends Instrument {
 void play(String n) {
 System.out.println("Wind.play() " + n);
 }
}
public class Stringed extends Instrument {
 void play(String n) {
 System.out.println("Stringed.play() " + n);
 }
}
public class Percussion extends Instrument {
 void play(String n) {
 System.out.println("Percussion.play() " + n);
 }
}

Example continued

34

public class Music {
 public static void tune(Instrument i) {
 i.play("Middle C");
 }
 public static void main(String[] args) {
 Wind flute = new Wind();
 Stringed violin = new Stringed();
 tune(flute); //upcasting to Instrument
 tune(violin); //upcasting to Instrument
 }
}

Wind.play() Middle C
Stringed.play() Middle C

What is output?

Polymorphism:

in tune, i is an Instrument, but it calls the play method

based on the specific type of the object it receives.

Instrument.play() Middle C
Instrument.play() Middle Cor

Dynamic (run-time) binding

• Given the definition of tune, how does the compiler know which
definition of the play method to call? Instrument? Wind? Stringed?

✦It will differ depending on the specific type of each argument passed to i.

✦This cannot be determined at compile time.

• Binding: connecting the method call to a method definition.

✦Static binding: done at compile time (play binds to Instrument.play)

✦Dynamic binding: at run-time, the JVM determines the actual type of i and

uses its play() definition. It can vary for each invocation of tune.

✦If the actual type of i does not define “play()”, the JVM looks for the

nearest definition in its superclass hierarchy.
35

public static void tune(Instrument i) {
 i.play("Middle C");
 }

Abstract methods and classes

• An abstract class is a class that cannot be instantiated, but it can
be subclassed

• It may or may not include abstract methods:

• An abstract method is a method that is declared in a class without

a method body, like this:

• If a class contains an abstract method, it must be declared to be
an abstract class.

36

abstract void f(int x);

Abstract methods and classes, example

• Any class that inherits from an abstract class must provide method
definitions for all the abstract methods in the base class.

✦Unless the derived class is also declared to be abstract

• The Instrument class can be made abstract:

✦No longer need “dummy” definitions for abstract methods

✦Common code (shared by subclasses) can be put in the abstract superclass

37

abstract class Instrument {
 private int i; // Storage allocated in each subclass
 abstract void play(String n); //subclass must define
 String what() {
 return “Instrument"; //when would this be executed?
 }
 abstract void adjust(); //subclass must define
}

Interface or Abstract class?

• Interface

✦Pro: can be implemented by any number of classes

✦Con: each class must have its own code for the methods, common

method implementations must be duplicated in each class

• Abstract Class

✦Pro: subclasses do not have to repeat common method implementations,

common code is in the abstract superclass

✦Con: Cannot be multiply inherited.

38

Collections in Java

• A collection is a data structure for holding elements

• java.util.Collection<T> is an interface implemented by many

classes in Java. It has 3 extended interfaces:

✦List<T> implemented by ArrayList<T> and LinkedList<T>, etc.

✦Set<T> implemented by HashSet<T> and others

✦Queue<T> implemented by PriorityQueue<T> and others

• Some methods in the Collection interface:

✦isEmpty(), contains(e), add(e), remove(e), iterator()

39

Maps in Java

• A map is an object that associates keys with values.

• A map cannot contain duplicate keys; each key can map to at most

one value.

• java.util.Map<K,V> is an interface implemented by many classes in

Java

✦HashMap<K,V>, Hashtable<K,V>

✦TreeMap<K,V>

• Some methods in the Map interface:

✦isEmpty, containsKey(e), put(k,v), get(k), remove(k)

✦values(): Collection<V>, keySet(): Set<K>

40

Diagram of Collections and Maps in Java

41

Linked Lists in the Java Library

• An linked list supports efficient insertion and removal at any
location: 
 
 

• java.util.LinkedList<T> is an class that implements List<T>

✦ void add(T e) appends to the end of the list

• T get(int i) and void set(int i, T e) are supported, but not efficient.
Each call traverses the list.

• Use an iterator to access elements in the middle.

42

Iterators in Java

• An iterator is an object that cycles through all the elements in a
collection. It points to an element of the collection.

• java.util.Iterator<T> is an interface with the following methods:

✦public T next() returns the next element in the collection (and advances)

✦public boolean hasNext() returns true if next() is not done.

✦public void remove() (Optional) removes the last element returned by next.

• You can get Iterators from Collections (and Maps):

✦ArrayList<Double> x = new ArrayList<Double>;  

Iterator<Double> it = x.iterator();

✦HashMap<String,Double> hm = new HashMap<String,Double>; 

Iterator<Double> it = hm.values().iterator();

43

Collections and Iterators: example

44

public class ListIteratorTester {
 public static void main(String[] args) {
 LinkedList<String> countries = new LinkedList<String>();
 countries.add("Belgium");  
 countries.add("Italy");  
 countries.add("Thailand");
 Iterator<String> iterator = countries.iterator();  
 while (iterator.hasNext()) {  
 String country = iterator.next();  
 System.out.println(country);
 }
 System.out.println();
 // Or use a for each loop
 for(String country : countries)
 System.out.println(country);
 System.out.println();
 // An Iterator can also remove elements:
 iterator = countries.iterator(); //reset to first element
 iterator.next();
 iterator.next();
 iterator.remove(); //removes second element
 }
}

Exceptions:
Error Handling in Java

• Run time errors

✦It is difficult to recover gracefully from run-time errors that occur in the

middle of a program.

✦At the point where the problem occurs, there often isn’t enough

information in that context (the method) to resolve the problem.

✦ In Java, that method hands off the problem out to a higher context (a

calling method) where someone is qualified to make the proper decision

• If the error can be resolved in the immediate context where it
occurs, it is NOT called an exception.

45

Exception semantics - 1

• When an error occurs inside a method, the method creates an
exception object.

✦could be in a library method or a user-defined method

• Reporting an exception to the runtime system is called 
throwing an exception.

• When a method throws an exception,

✦the current path of execution is interrupted, and

✦the runtime system attempts to find an appropriate place to continue

executing the program.

46

Exception semantics - 2

• The runtime system searches the call stack for an appropriate
exception handler

✦the call stack: the list of methods that have been called and are waiting for

the current method to return.

✦A calls B that calls C that calls D: The call stack contains A, B, C and D

with D on the top.

• The runtime system is looking for a previous method call that is
embedded in a block that has an exception handler associated
with it.

✦It starts at the top of the call stack and goes down (in reverse order in

which the methods were called)

47

Exception semantics - 3

• The runtime system is searching for an appropriate exception
handler

✦An exception handler is considered appropriate if the type of the exception

object thrown matches the type that can be handled by the handler

• The first exception handler encountered that matches the
exception is said to catch the exception.

• If the runtime system exhaustively searches all the methods on the
call stack without finding an appropriate exception handler, the
runtime system terminates the program.

✦And usually the exception is output to the screen

48

Exception syntax: how to throw an exception

49

• To throw an exception, use the keyword throw.

• To create an exception, use the appropriate constructor.

• Exception classes can be found in the API website: see
java.lang.Exception

 if (t==null)
 throw new NullPointerException();

Exception syntax: how to catch an exception

50

• To catch an exception, use the try-catch block.

• Surround the code that might generate an exception in the try

• Make an exception handler (a catch clause) for every type of

exception you want to catch.

try {
 // Code that calls methods that might throw exceptions
} catch(Type1 id1) {
 // Handle exceptions of Type1
} catch(Type2 id2) {
 // Handle exceptions of Type2
} catch(Type3 id3) {
 // Handle exceptions of Type3
}

// etc...

Exception syntax: how to catch an exception

51

• Each catch clause is like a little method that takes one argument of
a particular type.

• The parameters (id1, id2, and so on) can be used inside the
handler, just like a method argument.

• If the handler catches an exception, its catch block is executed,
and the flow of control proceeds to the next statement after
(outside) the try/catch.

✦only the first matching catch clause is executed.

Exception simple example

• What part of the code throws the exception?

• Output:

52

import java.io.*;
public class ExceptionTester{

 public static void main(String args[]){
 try{
 int a[] = new int[2];
 System.out.println("Access element three :" + a[3]);
 System.out.println(“After element access");
 }catch(ArrayIndexOutOfBoundsException e){
 System.out.println("Exception thrown :" + e);
 }
 System.out.println("Out of the block");
 }
}

Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3
Out of the block

The exception specification: being civil

53

• In Java, you are (strongly!) encouraged to inform the client
programmer, who calls your method, of the exceptions that might
be thrown from your method

✦Then the caller can know exactly what catch clauses to write to catch all

potential exceptions.

• The exception specification states which exceptions are thrown by
a method.

✦Also use the @throws tag in the javadoc comment to describe these in
more detail (when/why each one is thrown).

• Catch or specify requirement: If the method throws exceptions, it
must handle them or specify them in the signature.

✦Otherwise it’s a compiler error.

void f() throws TooBig, TooSmall, DivZero { //...

Catch or Specify: example

54

public class ListOfNumbers {
private ArrayList<Integer> ints;
private static final int SIZE = 10;

public ListOfNumbers () {
ints = new ArrayList<Integer>();
for (int i = 0; i < SIZE; i++) {

ints.add(i);
}

}

public void writeList() {
PrintWriter out = new PrintWriter(new FileWriter("OutFile.txt"));
for (int i = 0; i < SIZE; i++) {

out.println("Value at: " + i + " = " + ints.get(i));
}
out.close();

}
}

ListOfNumbers.java:16: error: unreported exception IOException;
must be caught or declared to be thrown
 PrintWriter out = new PrintWriter(new FileWriter("OutFile.txt"));

Catch or Specify: solution 1

55

public class ListOfNumbers {
private ArrayList<Integer> ints;
private static final int SIZE = 10;

public ListOfNumbers () {
ints = new ArrayList<Integer>(SIZE);
for (int i = 0; i < SIZE; i++) {

ints.add(i);
}

}

public void writeList() throws IOException {
PrintWriter out = new PrintWriter(new FileWriter("OutFile.txt"));
for (int i = 0; i < SIZE; i++) {

out.println("Value at: " + i + " = " + ints.get(i));
}
out.close();

}
}

This compiles with no errors.

Catch or Specify: solution 2

56

public void writeList() {

PrintWriter out = null;

try {
 out = new PrintWriter(new FileWriter("OutFile.txt"));

 for (int i = 0; i < SIZE; i++) {
 out.println("Value at: " + i + " = " + ints.get(i));

 }
} catch (IOException e) {

e.printStackTrace();
}

if (out != null)
 out.close();

}
This compiles with no errors.

Runtime Exceptions: an exception to the rule

57

• RuntimeExceptions are a special (sub)class of Exceptions.

✦They are thrown automatically by Java in certain contexts

✦This is part of the standard run-time checking that Java performs for you

• These exceptions are “unchecked exceptions”, they do not need to
conform to the “Catch or specify rule.

✦Methods are not required to indicate if they might throw one

✦Methods are not required to try to catch them

• What if they are not caught?

✦If a RuntimeException gets all the way out to main() without being caught,

printStackTrace() is called for that exception as the program exits

You can create your own exceptions

58

• If one of the Java Exceptions is not appropriate for your program,
you can create your own Exception classes

✦The class must inherit from an existing exception class, preferably one that

is close in meaning to your new exception.
class SimpleException extends Exception {}

class SimpleExceptionDemo {
 public void f() throws SimpleException {
 System.out.println("Throw SimpleException from f()");
 throw new SimpleException();
}}
public class DemoDriver {
 public static void main(String[] args) {
 SimpleExceptionDemo sed = new SimpleExceptionDemo();
 try {
 sed.f();
 } catch(SimpleException e) {
 System.err.println("Caught it!");
 }
}}

