What is recursion?

• Generally, when something contains a reference to itself
• Math: defining a function in terms of itself
• Computer science: when a function calls itself:

```c++
void message() {
    cout << "This is a recursive function.\n";
    message();
}
int main() {
    message();
}
```

What happens when this is executed?

How can a function call itself?

• Infinite Recursion:
  
  ```
  This is a recursive function.
  ... 
  ```

Note: If you encounter infinite recursion in Lab, be sure to STOP your program BEFORE running it again!!!
Tracing the calls

- 6 nested calls to message:
  message(5):
    - outputs “This is a recursive function”
  calls message(4):
    - outputs “This is a recursive function”
  calls message(3):
    - outputs “This is a recursive function”
  calls message(2):
    - outputs “This is a recursive function”
  calls message(1):
    - outputs “This is a recursive function”
  calls message(0):
    - does nothing, just returns

- depth of recursion (#times it calls itself) = 5

How to write recursive functions

- Branching is required (If or switch)
- Find a base case
  - one (or more) values for which the result of the function is known (no repetition required to solve it)
  - no recursive call is allowed here
- Develop the recursive case
  - For a given argument (say n), assume the function works for a smaller value (n-1).
  - Use the result of calling the function on n-1 to form a solution for n

Recursive function example

factorial

- Mathematical definition of n! (factorial of n)
  - if n=0 then n! = 1
  - if n>0 then n! = 1 x 2 x 3 x ... x n-1 x n

- What is the base case?
  - n=0 (the result is 1)
- Recursive case: If we assume (n-1)! can be computed, how can we get n! from that?
  - n! = n * (n-1)!

Recursive function example

factorial

```c
int factorial(int n) {
    if (n==0)
        return 1;
    else
        return n * factorial(n-1);
}
```

```c
int main() {
    int number;
    cout << "Enter a number ";
    cin >> number;
    cout << "The factorial of " << number << " is " << factorial(number) << endl;
}
```
Tracing the calls

- Calls to factorial:
  ```plaintext
  factorial(4):
  return 4 * factorial(3); = 4 * 6 = 24
  calls factorial(3):
  return 3 * factorial(2); = 3 * 2 = 6
  calls factorial(2):
  return 2 * factorial(1); = 2 * 1 = 2
  calls factorial(1):
  return 1 * factorial(0); = 1 * 1 = 1
  calls factorial(0):
  return 1;
  ```
- Every call except the last makes a recursive call
- Each call makes the argument smaller

Recursive functions: ints and lists

- Recursive functions over integers follow this pattern:
  ```plaintext
type f(int n) {
  if (n==0) // do the base case
    return 1;
  else // ... f(n-1) ...
}
```  
- Recursive functions over lists (arrays, linked lists, strings) use the `length` of the list in place of `n`
  - base case: if (length==0) ... // empty list
  - recursive case: assume f works for list of length n-1, compute the answer for a list with one more element.

Recursive function example

- sum of the list
- Recursive function to compute sum of a list of numbers
- What is the base case?
  - length=0 (empty list) => sum = 0
- If we assume we can sum the first n-1 items in the list, how can we get the sum of the whole list from that?
  - sum (list) = sum (list[0]..list[n-2]) + list[n-1]
  - Assume I am given the answer to this

Recursive function example

- sum of a list (array)
  ```plaintext
  int sum(int a[], int size) { // size is number of elems
    if (size==0)
      return 0;
    else
      return sum(a,size-1) + a[size-1];
  }
  ```
  - For a list with size = 4: sum(a,4) = 
    ```plaintext
    sum(a,3) + a[3] =
    (sum(a,2) + a[2]) + a[3] =
    ((sum(a,1) + a[1]) + a[2]) + a[3] =
    (((sum(a,0) + a[0]) + a[1]) + a[2]) + a[3] = 0 + a[0] + a[1] + a[2] + a[3]
    ```
Recursive function example

**count character occurrences in a string**

- Write a recursive function to count the number of times a **specific** character appears in a string.
- We will use the string member function `substr` to make a smaller string:
  - `string str.substr(int pos, int length);`
  - Returns a *newly constructed* string object containing the portion of `str` that starts at character position `pos` and spans `len` characters (or until the end of the string, whichever comes first).

```cpp
string x = "hello there";
string y = x.substr(0,10);  // Output: hello there
string z = x.substr(1,10);  // Output: ello there
string w = x[4];          // Output: o
```

```cpp
int numChars(char target, string str) {
    if (str.empty()) {
        return 0;
    } else {  // make recursive call, then modify the results:
        int result = numChars(target, str.substr(1,str.size()-1));
        if (str[0] == target)
            return 1+result;
        else
            return result;
    }
}
```

```cpp
int main() {
    string a = "hello";
    cout << a << " " << numChars('l',a) << endl;
}
```

Recursive function example

**greatest common divisor**

- Greatest common divisor of two non-zero ints is the largest positive integer that divides the numbers evenly (without a remainder).
- This is a variant of Euclid’s algorithm:
  
  \[
  \text{gcd}(x,y) = \begin{cases} 
  y & \text{if } x/y \text{ has no remainder} \\
  \text{gcd}(y, \text{remainder of } x/y) & \text{otherwise}
  \end{cases}
  \]

- It's a recursive definition, correctness is proven elsewhere.

```cpp
int gcd(int x, int y) {
    if (x % y == 0) {
        return y;
    } else {
        return gcd(y, x % y);
    }
}
```

```cpp
int main() {
    cout << "GCD(9,1): " << gcd(9,1) << endl;
    cout << "GCD(1,9): " << gcd(1,9) << endl;
    cout << "GCD(9,2): " << gcd(9,2) << endl;
    cout << "GCD(70,25): " << gcd(70,25) << endl;
    cout << "GCD(25,70): " << gcd(25,70) << endl;
}
```
### Recursive function example

#### Fibonacci numbers

- **Series of Fibonacci numbers:**
  
  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

- **Starts with 0, 1. Then each number is the sum of the two previous numbers**
  
  \[ F_0 = 0 \]
  \[ F_1 = 1 \]
  \[ F_i = F_{i-1} + F_{i-2} \quad \text{(for } i > 1) \]

- **It's a recursive definition**

  ```
  int fib(int x) {
    if (x==0 || x==1)
      return x;
    else
      return fib(x-1) + fib(x-2);
  }
  ```

- **Note:** the recursive fibonacci functions works as written, but it is VERY inefficient.

- **Counting the recursive calls to fib:**

  The first 40 fibonacci numbers:
  
  \[\begin{array}{l}
  \text{fib (0)= 0 } # \text{ of recursive calls to fib = 1} \\
  \text{fib (1)= 1 } # \text{ of recursive calls to fib = 1} \\
  \text{fib (2)= 1 } # \text{ of recursive calls to fib = 3} \\
  \text{fib (3)= 2 } # \text{ of recursive calls to fib = 5} \\
  \text{fib (4)= 3 } # \text{ of recursive calls to fib = 9} \\
  \text{fib (5)= 5 } # \text{ of recursive calls to fib = 15} \\
  \text{fib (6)= 8 } # \text{ of recursive calls to fib = 25} \\
  \text{fib (7)= 13 } # \text{ of recursive calls to fib = 41} \\
  \text{fib (8)= 21 } # \text{ of recursive calls to fib = 67} \\
  \text{fib (9)= 34 } # \text{ of recursive calls to fib = 109} \\
  \ldots
  \text{fib (40)= 102,334,155 } # \text{ of recursive calls to fib = 331,160,281}
  \end{array}\]  

### Recursive functions over linked lists

- **Member functions of a linked list class can be defined recursively.**
  - These functions take a pointer to a node in the list as a parameter
  - They compute the function for the list starting at the node \( p \) points to.

- **The pattern:**
  - base case: empty list, when \( p \) is NULL
  - recursive case: assume \( f \) works for list starting at \( p->next \), what is the answer for the list starting at \( p \)? (it has one more element).

```
class NumberList
{
  private:
    struct ListNode {
      double value;
      struct ListNode *next;
    };
    ListNode *head;
  int countNodes(ListNode *);  //private version, recursive

  public:
    NumberList();
    NumberList(const NumberList & src);
    ~NumberList();
    void appendNode(double);
    void insertNode(double);
    void deleteNode(double);
    void displayList();
    int countNodes();          //public version, calls private
};
```
Recursive function example

count the number of nodes in a list

// the private version, has a pointer parameter
// How many nodes are in the list starting at the pointer?
int NumberList::countNodes(ListNode *p) {
    if (p == NULL)
        return 0;
    else
        return 1 + countNodes(p->next);
}

// the public version, no arguments (Nodes are private)
// calls the recursive function starting at head
int NumberList::countNodes() {
    return countNodes(head);
}

Note that this function is overloaded

Recursive function example

display the node values in reverse order

// the private version, needs a pointer parameter
void NumberList::reverseDisplay(ListNode *p) {
    if (p == NULL) {
        // do nothing
    } else {
        // display the “rest” of the list in reverse order
        reverseDisplay(p->next);
        cout << p->value << " ";
    }
}

// the public version, no arguments
void NumberList::reverseDisplay() {
    reverseDisplay(head);
    cout << endl;
}

Linked List example:

• Append x to the end of a singly linked list:
  - Pass the node pointer by reference
  - Recursive

void List::append (double x) {
    append(x, head);
}

void List::append (double x, Node *&p) {
    if (p == NULL) {
        p = new Node;
        p->data = x;
        p->next = NULL;
    } else
        append (x, p->next);
}

Why use recursion?

• It is true that recursion is never required to solve a problem
  - Any problem that can be solved with recursion can also be solved using iteration.
• Recursion requires extra overhead: function call + return mechanism uses extra resources

However:

• Some repetitive problems are more easily and naturally solved with recursion
  - the recursive solution is often shorter, more elegant, easier to read and debug.