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Abstract: Scientific computing produces, transfers, and stores massive amounts 
of single- and double-precision floating-point data, making this a domain that can 

greatly benefit from data compression. To gain insight into what makes an effec-
tive lossless compression algorithm for such data, we generated over nine million 

algorithms and selected the one that yields the highest compression ratio on 26 

datasets. The resulting algorithm, called SPDP, comprises four data transfor-
mations that operate exclusively at word or byte granularity. Nevertheless, SPDP 

delivers the highest compression ratio on eleven datasets and, on average, outper-
forms all but one of the seven compared compressors. An analysis of SPDP’s 

internals reveals how to build effective compression algorithms for scientific data. 

1. Introduction 

Scientific computing applications often produce and transfer large amounts of floating-

point data. For example, many simulations exchange data between processing nodes and 
with mass storage devices after every time step. Some large datasets have to be sent to 

other locations for additional processing, analysis, or visualization. Moreover, long-run-
ning programs regularly save checkpoints to disk so that they can resume execution from 

the most recent checkpoint after a crash. It is well known that compression can reduce the 
amount of data that needs to be transferred and stored in these and other situations. 

Many users of scientific computing take advantage of frameworks like HDF5 for managing 

their data [7]. Some of these frameworks support compression “filters”. However, such 
filters are only likely to be employed if they are effective. Moreover, they need to be loss-

less so that they can safely be used in any setting. Depending on the application, scientific 

data are typically stored in either single- or double-precision IEEE 754 floating-point for-
mat. Users do not want to have to select different filters depending on the data’s precision. 

Rather, they would like a single algorithm that compresses both types well. 

To identify an effective lossless compression algorithm that meets this criterion, we used 

our CRUSHER framework to systematically generate over nine million algorithm candi-

dates from a set of 48 algorithmic components. Each component implements a data trans-
formation and can operate at word and byte granularity. CRUSHER then performed an 

exhaustive search to determine the best four-component algorithm in this search space for 
a suite of 13 single- and 13 double-precision datasets. The goal of the work presented in 

this paper is to answer the following two research questions. 1) Can we gain insight and 

learn from the resulting algorithm, for example, how to best handle mixed single/double 
datasets? 2) Can a competitive compression algorithm be created from data transfor-

mations that only process data at word and byte granularity but not at bit granularity? 

We named the resulting algorithm SPDP, which is an abbreviation for “Single Precision 



Double Precision”. It is brand new and not similar to prior compression algorithms. SPDP 

delivers the highest compression ratio on eleven of the 26 tested datasets. Only Zstd per-
forms better. On average, SPDP outperforms Blosc, bzip2, FastLZ, LZ4, LZO, and Snappy 

by at least 30% in terms of compression ratio. However, it tends to be slower. 

This paper makes the following contributions. 1) We systematically search 9,400,320 com-
binations of four algorithmic components to determine the best compression algorithm 

within this space. 2) We analyze the resulting sequence of components to gain insight into 

why it works well and how to handle mixed types of inputs. 3) We present a previously 
unknown algorithm (SPDP) that compresses floating-point data well even without any bit-

granularity coders. 4) We compare many compression algorithms that are available as 
HDF5 filters in terms of compression ratio, compression throughput, and decompression 

throughput. SPDP is freely available as a standalone compressor and as an HDF5 filter [6]. 

The rest of this paper is organized as follows. Section 2 describes our algorithm synthesis 

approach. Section 3 summarizes related work. Section 4 provides an overview of the sys-
tem, compressors, and datasets we use. Section 5 presents and discusses the experimental 

results. Section 6 concludes with a summary and future work. 

2. Algorithm Synthesis 

To be able to systematically search for effective compression algorithms, we built a frame-
work called CRUSHER for automatically synthesizing compressors and the corresponding 

decompressors. It is based on a library of interoperable algorithmic components. These 

components are the result of a thorough analysis of preexisting compression algorithms. In 
particular, we broke many prior algorithms down into their constituent parts and general-

ized them. This yielded a number of algorithmic components for building data models and 
coders. We then implemented these components using a common interface such that each 

component can be given a block of data as input, which it transforms into an output block 

of data. This design makes it possible to combine (chain) the components in any way, al-
lowing for the generation of a large number of compression-algorithm candidates from a 

small set of components. CRUSHER uses exhaustive search to automatically determine 
the best chain of components (aka compression algorithm) in its search space for a given 

set of input data. Importantly, for each algorithmic component, the framework includes an 

inverse that performs the opposite transformation. Thus, for any chain of components, it is 
straightforward to synthesize the matching decompressor. 

2.1. Algorithmic Components 

This section describes the 48 algorithmic components available to CRUSHER for synthe-
sizing compression algorithms. Many of them are generalizations or approximations of 

data transformations extracted from prior algorithms. Each component takes a sequence of 
values as input (i.e., an array), transforms it, and outputs the transformed sequence. 

The NUL component simply outputs the input sequence. It ensures that chains with n com-
ponents can also represent all possible algorithms with fewer than n components. 

The BIT component groups the values into chunks of as many values as there are bits per 

value. It then transforms each chunk by emitting a word that contains the most significant 
bits of the values, followed by a word that contains the second most significant bits, etc. 



The DIMn component takes a parameter n that specifies the dimensionality and groups the 

values accordingly. For example, a dimension of three changes the linear sequence x1, y1, 
z1, x2, y2, z2, x3, y3, z3 into x1, x2, x3, y1, y2, y3, z1, z2, z3. We use n = 2, 4, 8, and 12. 

The ROTn component takes a parameter n that specifies by how many units to rotate the 

bits of each word in the input sequence. There are seven versions of this component that 
rotate the bits by one eighth to seven eighths of the word size in bits. 

The LNVkn component takes two parameters. It subtracts the last nth value from the current 
value and emits the residual. If k = ‘s’, arithmetic subtraction is used. If k = ‘x’, bitwise 

subtraction (xor) is used. In both cases, we tested n = 1, 2, 3, 4, 8, 12, 16, 32, and 64. 

None of the above components change the size of the data blocks. The next three compo-
nents are the only ones that can reduce the length of a data block, i.e., compress it. 

The ZE component operates on chunks of eight values and emits a bitmap that contains a 

bit for every value in the chunk. Each bit indicates whether the corresponding value is zero 
or not. Following the bitmap, ZE emits the non-zero values from the chunk. 

The RLE component performs run-length encoding. In particular, it counts how many 

times the current value appears in a row. Then it counts how many non-repeating values 
follow. Both counts are recorded in a single word, i.e., each count gets half of the bits. This 

count is emitted first, followed by the current value and then the non-repeating values. 

The LZln component implements a variant of the LZ77 algorithm [13]. It incorporates 
tradeoffs that make it more efficient than other LZ77 versions on hard-to-compress data 

and operates as follows. It uses a 32768-entry hash table to identify the l most recent prior 
occurrences of the current value. Then it checks whether the n values immediately preced-

ing those locations match the n values just before the current location. If they do not, only 

the current value is emitted and the component advances to the next value. If the n values 
match, the component counts how many values following the current value match the val-

ues after that location. The length of the matching substring is emitted and the component 
advances by that many values. We consider n = 3, 4, 5, 6, and 7 combined with l = ‘a’, ‘b’, 

and ‘c’, where ‘a’ = 1, ‘b’ = 2, and ‘c’ = 4, which yields fifteen LZln components. 

The │ pseudo component, called the Cut and denoted by a vertical bar, is a singleton com-
ponent that converts a sequence of words into a sequence of bytes. Every algorithm pro-

duced by CRUSHER contains a Cut, which is included because it may be more effective 

to perform none, some, or all of the compression at byte rather than word granularity. 

Each component includes a corresponding inverse component that performs the reverse 

data transformation. By chaining the inverse components in the opposite order, CRUSHER 
can automatically synthesize the matching decompression algorithm for any chain of com-

ponents, i.e., for any compression algorithm it can generate. 

Due to the Cut, we need two versions of each component and its inverse, one for words (4-
byte values) and one for bytes. We implemented all components using C++ templates to 

facilitate the generation of these versions. There are no components that emit data at bit 

granularity such as Huffman or arithmetic coders. Each component exclusively uses integer 
operations and works on an integer representation, i.e., each floating-point value is copied 

bit by bit into an integer. All included components run in linear time. We excluded more 
complex components such as move-to-front and block-sorting components to make the 



synthesis faster, which has to evaluate millions of algorithms. 

Not counting the Cut, CRUSHER has 48 components at its disposal, 17 of which are able 

to reduce the length of the data. The purpose of the remaining 31 components is to trans-
form the values in such a way that the reducers become maximally efficient. Chains with 

more than four components have the potential for better compression but would make the 
search for the best algorithm nearly intractable. For an algorithm with k stages, i.e., a chain 

with k components, the search space encompasses (k+1) ∙ 48k–1 ∙ 17 possibilities because 

there are k+1 locations for the Cut, k–1 stages that can each hold any one of the 48 compo-
nents (duplicates are allowed), and a final stage that can hold any one of the 17 reducers. 

In our case, this amounts to 9,400,320 possible four-stage algorithms. 

3. Related Work 

This section describes prior work on synthesizing compression algorithms. We first used 

CRUSHER to create a massively-parallel floating-point compression algorithm for GPUs 
[12]. That work employs some of the same algorithmic components. However, it only uti-

lizes components that can easily be parallelized. SPDP does not have this limitation, which 

is why it almost always compresses better, in some cases by a large margin. 

Then, we modified CRUSHER itself by adding a fast heuristic- and sampling-based paral-
lel search algorithm to accelerate the synthesis [2]. This makes it possible to generate com-

pression algorithms in real-time that are tailored to each dataset, i.e., to compress each 
dataset with a potentially unique algorithm. Whereas this customization yields higher com-

pression ratios on some inputs, the fast search tends to miss some good algorithms in the 

search space. On average, the compression ratio is 12% lower on the double- and 20% 
lower on the single-precision datasets compared to SPDP, whose synthesis took days. 

None of the remaining related works described below are designed for floating-point data. 

Instead, they target integers, program execution traces, heterogeneous files, images, and 
databases. Hence, we do not compare SPDP to these approaches. 

We utilized CRUSHER to generate integer compression algorithms that are space-probe 

friendly [3]. That work also partially uses the same algorithmic components. However, it 
only employs components that require very little state (small or no tables/dictionaries) as 

most space probes only contain a small amount of (radiation-hardened) main memory. 

In much earlier work, we presented TCgen, a tool to generate customized trace compressors 
from a user-provided configuration of one or more predictors [1]. TCgen then translates 

this description into C source code that is optimized for the specified trace format and 

predictors (components). CRUSHER supports many more components and automatically 
determines good algorithms without the need for a description from the user. 

Kattan and Poli propose a system that employs genetic programming to find optimal ways 

to combine standard compression algorithms [9]. They group similar data chunks together 
and label each group with the best compression algorithm for its chunks. Similarly, Hsu 

and Zwarico present an automatic synthesis technique for compressing heterogeneous files 

[8]. Each chunk of data is compressed using a different algorithm, which is determined 
using a statistical method. Note that they combine chunks of the input data that were po-

tentially compressed with different algorithms whereas we combine components to form a 
single compression algorithm that is used throughout. 



The same distinction applies to Mitra et al., who propose a methodology for compressing 

fractal images [10]. Initially, fractal codes are computed for each domain block. Then these 
blocks are classified into two types based on the variability of the pixels in each block. The 

purpose of this classification is to obtain higher compression ratios and to reduce the en-
coding time. Wu and Lin use a similar approach with three classes [11]. 

Fang et al. investigate how to compress database information to minimize the CPU/GPU 
transfer overhead [4]. They use a compression planner and a cost model to identify an 

optimal combination among nine different compression schemes and employ a rule-based 

method to automatically prune the search space. They utilize fewer components than we 
do and, as in Kattan and Poli’s work, each component is an entire compression algorithm.  

Chaining whole compression algorithms, as is proposed in some of the above work, is fun-
damentally different from chaining algorithmic components to build a compression algo-

rithm, which is what we do. After all, the goal of a compression algorithm is to maximally 
reduce the number of bytes, which generally means that there are few exploitable patterns 

left in the output. This makes it difficult for the next compression algorithm in a chain to 

be effective. Our approach does not suffer from this problem. In fact, most of the algorith-
mic components we use do not reduce the number of bytes but transform the data to better 

expose patterns (cf. Section 2.1). 

4. Methodology 

4.1. Compressors 

For our evaluation, we selected the compressors from the list of HDF5 filters [6] that are 
lossless and serial and that we could get to compile and run. In addition to SPDP, this is 

Blosc, bzip2, FastLZ, LZ4, LZO, Snappy, and Zstd. We use Blosc without any pre-condi-

tioner as we found them to lower the compression ratio on our datasets. Where possible, 
we run each compressor with its fastest as well as its best compressing configuration. In all 

cases, we evaluate the standalone compressor without employing HDF5. 

4.2. Measurements 

For each tested compressor and configuration, we report the compression ratio, the com-
pression throughput, and the decompression throughput. The compression ratio is the num-

ber of bytes in the uncompressed dataset divided by the number of bytes in the compressed 

dataset. Hence, higher ratios are better. To measure the runtime, we timed the tools’ exe-
cution on the command line. To exclude the disk speed from the timing measurements, the 

input datasets were cached in main memory and the outputs were written to /dev/null. To 
obtain the throughput, we divided the original dataset size by the measured runtime. We 

report throughputs rather than runtimes because throughputs are independent of the dataset 

size and more amenable to averaging. Moreover, throughput is also a higher-is-better met-
ric. Each experiment was conducted five times and the median throughput is reported. For 

each tool, we verified that the decompressed output matches the original dataset exactly. 

4.3. Datasets 

We use the thirteen FPC datasets for our evaluation [5]. They include observational data 
(obs), numeric results (num), and MPI messages (msg). Table 1 provides information about 



each dataset. The first two numeric columns list the size in megabytes and in millions of 

double-precision values. The middle column shows the percentage of values that are 
unique. The fourth column displays the first-order entropy of the values in bits. The last 

column expresses the randomness of each dataset in percent, i.e., it reflects how close the 
first-order entropy is to that of a truly random dataset with the same number of unique 

values. For the single-precision versions, we simply converted the double-precision data. 

Table 1: Information about the double-precision datasets 

 

4.4. System and Compiler 

We compiled the tested codes with gcc/g++ 5.3.1 using the “-O3 -march=native” flags. We 
measured the runtime of the compressors on a system with dual 10-core Xeon E5-2687W 

v3 CPUs running at 3.1 GHz. Each core has separate 32 kB L1 caches, a unified 256 kB 
L2 cache, and the cores on a socket share a 25 MB L3 cache. The host memory size is 128 

GB and has a peak bandwidth of 68 GB/s. The operating system is Fedora 23. 

5. Experimental Results 

The following subsections present the results of our evaluation. The first subsection ana-
lyzes the structure of the synthesized SPDP algorithm. The remaining subsections compare 

it to the other compressors in terms of compression ratio, compression throughput, and 

decompression throughput. Whenever we mention an average, it is the geometric mean. 

5.1. Synthesized Algorithm 

SPDP, the best-compressing four-component algorithm for our datasets in CRUSHER’s 
9,400,320-entry search space is LNVs2 | DIM8 LNVs1 LZa6. Whereas there has to be a 

reducer component at the end, none appear in the first three positions, i.e., CRUSHER 

generated a three-stage data model followed by a one-stage coder. This result shows that 
chaining whole compression algorithms, each of which would include a reducer, is not 

beneficial. Also, the Cut appears after the first component, so it is important to first treat 
the data at word granularity and then at byte granularity to maximize the compression ratio.  

The LNVs2 component at the beginning that operates at 4-byte granularity is of particular 

interest. It subtracts the second-previous value from the current value in the sequence and 
emits the residual. This enables the algorithm to handle both single- and double-precision 

data well. In case of 8-byte doubles, it takes the upper half of the previous double and 
subtracts it from the upper half of the current double. Then it does the same for the lower 

size doubles unique values 1st order randomness

(megabytes) (millions) (percent) entropy (bits) (percent)

msg_bt 254.0 33.30 92.9 23.67 95.1

msg_lu 185.1 24.26 99.2 24.47 99.8

msg_sp 276.7 36.26 98.9 25.03 99.7

msg_sppm 266.1 34.87 10.2 11.24 51.6

msg_sweep3d 119.9 15.72 89.8 23.41 98.6

num_brain 135.3 17.73 94.9 23.97 99.9

num_comet 102.4 13.42 88.9 22.04 93.8

num_control 152.1 19.94 98.5 24.14 99.6

num_plasma 33.5 4.39 0.3 13.65 99.4

obs_error 59.3 7.77 18.0 17.80 87.2

obs_info 18.1 2.37 23.9 18.07 94.5

obs_spitzer 189.0 24.77 5.7 17.36 85.0

obs_temp 38.1 4.99 100.0 22.25 100.0



halves. The result is, except for a suppressed carry, the same as computing the difference 

sequence on 8-byte values. In case of 4-byte single-precision data, this component also 
computes the difference sequence, albeit using the second-to-last rather than the last value. 

If the values are similar, which is where difference sequences help, then the second-previ-
ous value is also similar and should yield residuals that cluster around zero as well. This 

observation answers our first research question. We are able to learn from the synthesized 

algorithm, in this case how to handle mixed single/double-precision datasets. 

The DIM8 component after the Cut separates the bytes making up the single or double 

values such that the most significant bytes are grouped together, followed by the second 

most significant bytes, etc. This is likely done because the most significant bytes, which 
hold the exponent and top mantissa bits in IEEE 754 floating-point values, correlate more 

with each other than with the remaining bytes in the same value. This assumption is sup-
ported by the LNVs1 component that follows, which computes the byte-granularity differ-

ence sequence and, therefore, exploits precisely this similarity between the bytes in the 

same position of consecutive values. The LZa6 component compresses the resulting dif-
ference sequence. It uses n = 6 to avoid bad matches that result in zero counts being emitted, 

which expand rather than compress the data. The chosen high value of n indicates that bad 
matches are frequent, as is expected with relatively random datasets (cf. Table 1). 

5.2. Compression Ratio 

Table 2 shows the compression ratios on the 26 datasets for the investigated compressors. 

The highest compression ratio for each dataset is highlighted. The bottom row lists the 
geometric mean of the compression ratios over all datasets for each compressor. 

There are only two algorithms that yield highest compression ratios on these datasets, Zstd 

and SPDP. Zstd compresses fifteen of the datasets best and SPDP the remaining eleven. 
On average, Zstd provides the highest compression ratio by a substantial margin. This is, 

to a large degree, due to its great performance on num_plasma, which it compresses by 

over an order of magnitude more than any of the other compressors. It appears that Zstd is 
able to capitalize on the very low fraction of unique values in this dataset (cf. Table 1). 

SPDP outperforms the remaining compression algorithms on the majority of the datasets 

and also on average. Its geometric-mean compression ratio is over 30% higher than that of 
bzip2, the next best algorithm. We believe this is an impressive result given that SPDP 

does not include any bit-granularity coders whereas the other algorithms do. 

The single-precision datasets are derived from their double-precision counterparts. Yet, 
only ten of the thirteen single-precision datasets are more compressible, most notably 

msg_sweep3d.sp, which is over 2.4 times as compressible as msg_sweep3d.dp. In the re-
maining cases, the double-precision versions are more compressible. For instance, 

obs_spitzer.dp is 1.8 times as compressible as obs_spitzer.sp. Evidently, the lower mantissa 

bits that are dropped when converting a double- to a single-precision value tend to be more 
random than the retained mantissa bits, but this is not always the case. 

Overall, SPDP is surprisingly efficient, delivers a record compression ratio on 11 datasets, 

and outperforms the other algorithms except Zstd on 18 of the 26 datasets. These results 
highlight the potential of automatic compression-algorithm synthesis and answer our sec-

ond research question. A competitive algorithm can be created from components that do 
not process data at bit granularity such as Huffman or arithmetic coders. 



Table 2: Compression ratios 

 

5.3. Compression Speed 

Table 3 lists the compression throughputs (in MB/s) on each dataset for the investigated 

compressors. The highest throughput for each dataset is highlighted. The bottom row 
shows the geometric mean throughput over all datasets for each compressor. 

At level 1, both SPDP and Zstd compress at roughly 330 MB/s. At their best-compressing 
level, SPDP is much faster than Zstd. However, it should be noted that Zstd compresses 

better, on average, at its lowest level than SPDP at its highest level, so Zstd is clearly pre-
ferred. Among the other algorithms, all of which compress significantly less than SPDP, 

only Blosc level 1, LZ4 fast, and Snappy are faster than SPDP. The remaining algorithms 

are, on average, outperformed both in compression ratio and throughput by SPDP (and 
Zstd). Snappy is the fastest compressor, but it delivers one of the lowest compression ratios. 

Note that a high compression speed is of interest in scientific computing where large 
amounts of floating-point data are produced that may have to be compressed on the fly. 

5.4. Decompression Speed 

Table 4 lists the decompression throughputs (in MB/s) on each dataset for the investigated 
compressors. The highest throughput for each dataset is again highlighted. The bottom row 

shows the geometric mean throughput over all datasets for each compressor. 

Zstd decompresses substantially faster than SPDP. It is 26% faster at level 1 and over two 

times faster in the best-compressing mode. Except for SPDP level 9, all algorithms decom-
press faster than they compress on average, in some cases by a large factor. For example, 

Zstd level 22 decompresses over 75 times faster than it compresses. In contrast, SPDP is a 

fairly symmetric algorithm that compresses and decompresses at about the same speed. A 
faster decompression throughput is useful in cases where a dataset is compressed once but 

decompressed multiple times, such as for datasets that are analyzed or visualized many 
times. In other cases, for example program checkpoints that are almost never read, the 

Blosc Blosc bzip2 bzip2 FastLZ FastLZ LZ4 LZ4  SPDP  SPDP Zstd Zstd

level 1 level 9 fast best fast best fast best level 1 level 9 level 1 level 22

msg_bt.dp 1.00 1.04 1.10 1.09 1.05 1.05 1.06 1.07 1.05 1.06 1.28 1.33 1.11 1.12

msg_lu.dp 1.00 1.00 1.02 1.02 0.98 0.98 1.00 1.00 1.00 1.00 1.20 1.26 1.06 1.05

msg_sp.dp 1.00 1.00 1.08 1.05 1.00 1.00 1.00 1.01 1.00 1.00 1.27 1.30 1.06 1.07

msg_sppm.dp 1.76 1.62 6.78 6.93 5.08 5.70 5.28 6.73 6.78 4.82 4.66 5.05 7.25 10.26

msg_sweep3d.dp 1.01 1.02 1.06 1.29 1.00 1.00 1.02 1.02 1.02 1.02 1.31 3.01 1.87 2.86

num_brain.dp 1.00 1.00 1.04 1.04 0.98 0.98 1.00 1.00 1.00 1.00 1.14 1.20 1.06 1.10

num_comet.dp 1.03 1.07 1.14 1.17 1.05 1.06 1.08 1.09 1.08 1.08 1.16 1.16 1.16 1.39

num_control.dp 1.01 1.01 1.03 1.03 0.99 0.99 1.01 1.01 1.02 1.01 1.02 1.01 1.06 1.06

num_plasma.dp 1.00 1.05 1.38 5.79 1.41 1.41 1.33 1.39 1.50 1.19 1.29 33.17 381.24 408.26

obs_error.dp 1.00 1.07 1.30 1.34 1.26 1.26 1.27 1.29 1.27 1.30 1.14 1.61 1.52 5.61

obs_info.dp 1.00 1.01 1.10 1.22 1.04 1.07 1.08 1.13 1.10 1.05 1.22 1.95 1.20 4.10

obs_spitzer.dp 1.00 1.02 1.29 1.75 1.04 1.05 1.05 1.20 1.14 1.06 1.00 0.98 1.18 3.27

obs_temp.dp 1.00 1.00 1.02 1.02 0.97 0.97 1.00 1.00 1.00 1.00 1.02 1.03 1.04 1.04

msg_bt.sp 1.00 1.04 1.13 1.13 1.06 1.06 1.06 1.07 1.08 1.06 1.43 1.48 1.14 1.22

msg_lu.sp 1.00 1.00 1.03 1.04 0.97 0.97 1.00 1.00 1.00 1.00 1.30 1.35 1.07 1.07

msg_sp.sp 1.00 1.00 1.16 1.14 1.00 1.00 1.00 1.01 1.08 1.00 1.47 1.53 1.11 1.26

msg_sppm.sp 3.18 1.69 8.14 8.74 7.85 8.37 8.55 8.73 8.63 6.26 6.93 7.69 9.84 13.52

msg_sweep3d.sp 1.01 1.02 1.10 2.35 1.00 1.00 1.02 1.03 1.03 1.02 1.45 7.32 5.52 6.07

num_brain.sp 1.00 1.00 1.09 1.11 0.98 0.98 1.00 1.00 1.00 1.00 1.26 1.35 1.13 1.13

num_comet.sp 1.03 1.07 1.11 1.12 1.06 1.06 1.08 1.09 1.09 1.08 1.18 1.18 1.15 1.15

num_control.sp 1.01 1.01 1.04 1.04 0.99 0.99 1.01 1.01 1.02 1.01 1.02 1.01 1.08 1.08

num_plasma.sp 1.00 3.93 1.53 8.65 1.12 1.97 1.00 1.09 1.22 1.02 3.26 34.74 254.98 369.22

obs_error.sp 1.00 1.02 1.28 1.34 1.17 1.18 1.12 1.20 1.25 1.18 1.28 2.03 1.31 5.63

obs_info.sp 1.00 1.01 1.12 1.33 1.02 1.07 1.07 1.13 1.13 1.05 1.60 2.28 1.21 3.62

obs_spitzer.sp 1.00 1.00 1.23 1.39 1.02 1.02 1.02 1.08 1.08 1.02 1.00 0.99 1.15 1.82

obs_temp.sp 1.00 1.00 1.04 1.05 0.97 0.97 1.00 1.00 1.00 1.00 1.01 1.00 1.08 1.08

GeoMean 1.07 1.11 1.31 1.59 1.20 1.24 1.21 1.25 1.26 1.19 1.42 2.09 2.22 3.09

Dataset LZO Snappy



decompression speed is immaterial. Due to its symmetry, SPDP’s decompression through-

put is low and only higher than that of bzip2 and LZO. Again, Snappy is the fastest. 

Table 3: Compression throughput in megabytes per second 

 

Table 4: Decompression throughput in megabytes per second 

 

6. Summary and Future Work 

In this paper, we describe the design, analyze the structure, and evaluate the performance 

of SPDP, an automatically synthesized lossless compression algorithm for single- and dou-
ble-precision floating-point data. It is the best-compressing out of the 9,400,320 possible 

four-stage algorithms that can be built from our set of 48 algorithmic components that does 
not include any bit-level coders. SPDP yields the highest compression ratio on eleven of 

Blosc Blosc bzip2 bzip2 FastLZ FastLZ LZ4 LZ4  SPDP  SPDP Zstd Zstd

level 1 level 9 fast best fast best fast best level 1 level 9 level 1 level 22

msg_bt.dp 747.4 194.2 8.8 8.4 146.2 233.4 1010.6 41.2 5.5 1011.7 413.1 199.2 310.1 2.2

msg_lu.dp 674.0 185.0 8.3 7.8 134.9 225.7 1406.4 38.0 5.6 1786.7 426.6 190.9 403.7 2.6

msg_sp.dp 746.1 187.9 8.4 8.0 144.4 227.6 1554.3 38.0 4.9 1636.8 387.6 200.5 443.7 2.1

msg_sppm.dp 819.3 355.9 6.7 5.7 520.6 472.1 900.4 52.6 6.3 1384.2 364.8 333.6 454.6 7.8

msg_sweep3d.dp 673.3 172.6 8.4 8.1 133.5 194.8 1226.3 38.8 5.7 1811.6 326.9 250.1 265.3 2.8

num_brain.dp 718.6 176.0 8.2 7.7 136.5 203.6 1249.0 38.0 5.5 2218.3 330.8 189.2 368.7 2.5

num_comet.dp 528.5 200.3 9.3 8.5 136.4 208.7 792.0 37.6 5.6 1946.9 298.8 186.3 365.5 2.5

num_control.dp 758.8 188.2 8.3 7.7 138.7 235.7 1824.1 38.0 5.7 2189.4 312.4 163.0 379.1 2.8

num_plasma.dp 677.5 194.7 9.7 2.8 157.1 304.6 295.9 46.2 7.8 477.3 388.9 277.7 1364.2 96.0

obs_error.dp 718.2 177.2 9.6 9.1 149.0 205.7 365.2 43.3 3.3 339.4 277.7 181.4 166.0 3.9

obs_info.dp 420.8 113.3 8.5 8.2 89.3 126.4 493.5 36.2 6.0 931.7 212.8 122.4 297.6 3.0

obs_spitzer.dp 719.3 176.5 9.4 9.6 128.4 170.7 548.9 39.4 4.1 445.2 371.5 155.4 148.0 1.5

obs_temp.dp 478.5 188.5 8.2 7.7 111.3 243.4 1051.0 38.2 5.6 1211.0 333.6 138.2 251.4 4.3

msg_bt.sp 745.5 185.3 9.2 8.7 139.7 217.0 965.3 40.1 5.4 814.6 379.1 208.9 214.2 2.4

msg_lu.sp 709.5 169.4 8.6 8.1 128.8 203.2 1171.1 37.4 5.6 1460.5 434.1 188.4 321.5 3.5

msg_sp.sp 679.9 179.4 9.0 8.4 137.8 206.2 1119.8 38.5 5.2 1602.9 376.7 207.9 333.5 2.5

msg_sppm.sp 730.0 318.3 5.6 4.8 539.9 385.9 1496.8 157.4 16.7 1784.0 458.6 376.5 691.0 15.6

msg_sweep3d.sp 512.7 169.2 8.7 4.0 127.6 174.4 1543.8 37.5 5.6 1335.4 350.0 217.5 638.3 15.0

num_brain.sp 717.4 183.3 8.6 7.9 120.3 174.4 1368.7 35.7 5.4 1559.6 262.0 187.1 315.6 3.7

num_comet.sp 474.1 202.1 9.1 8.3 128.0 204.6 814.2 37.1 5.6 1166.6 222.7 169.0 346.4 3.7

num_control.sp 673.1 190.9 8.3 7.7 130.0 260.3 1070.3 38.7 5.7 1701.6 289.7 167.4 334.9 3.8

num_plasma.sp 394.7 314.8 9.3 3.0 104.5 170.6 807.7 39.4 6.5 314.8 292.7 170.4 965.2 74.6

obs_error.sp 400.3 126.4 9.3 8.8 127.8 249.8 354.6 37.3 2.5 238.7 386.1 149.3 132.9 3.1

obs_info.sp 325.8 90.9 8.4 8.6 89.0 107.0 495.2 33.6 5.9 659.1 170.9 161.7 200.0 2.4

obs_spitzer.sp 521.4 147.8 9.1 8.8 118.4 148.9 430.2 35.6 3.7 351.1 301.1 169.9 179.7 1.7

obs_temp.sp 444.2 176.1 8.2 8.0 90.2 134.2 936.5 33.8 5.6 1348.2 258.7 132.1 270.7 5.1

GeoMean 597.7 183.6 8.5 7.2 140.3 208.1 870.3 40.8 5.5 1024.6 323.6 189.2 333.5 4.4

Dataset LZO Snappy

Blosc Blosc bzip2 bzip2 FastLZ FastLZ LZ4 LZ4  SPDP  SPDP Zstd Zstd

level 1 level 9 fast best fast best fast best level 1 level 9 level 1 level 22

msg_bt.dp 945.1 956.8 20.7 18.4 595.9 563.1 1854.4 1714.5 277.5 3470.8 430.4 203.7 478.6 269.3

msg_lu.dp 805.5 872.2 19.4 16.9 539.4 501.6 2081.0 2144.2 384.0 3624.9 453.9 199.3 422.6 289.6

msg_sp.dp 854.9 943.1 20.2 17.8 546.7 511.7 2149.9 1146.4 311.0 3741.9 412.6 198.8 469.2 231.7

msg_sppm.dp 960.8 1042.5 61.6 52.1 844.5 1002.4 1691.1 2450.3 327.8 3409.6 426.6 333.3 811.1 891.3

msg_sweep3d.dp 742.8 725.9 19.4 17.0 522.9 522.9 2070.6 1783.4 344.7 3313.6 431.5 122.2 393.7 323.9

num_brain.dp 795.1 734.8 18.8 16.5 649.4 495.9 2118.7 1831.6 384.0 3019.6 373.2 189.6 398.1 221.6

num_comet.dp 645.4 975.6 19.9 17.5 549.3 504.2 1634.4 1406.6 306.1 2529.7 315.0 188.3 381.8 232.0

num_control.dp 782.1 809.3 19.6 17.2 594.8 505.8 1398.4 2319.8 366.4 3127.1 360.1 158.3 408.5 424.1

num_plasma.dp 868.7 580.3 20.3 39.7 384.9 363.0 676.3 914.7 158.8 1119.0 437.2 84.0 1599.6 989.2

obs_error.dp 890.6 513.6 20.7 17.9 392.5 408.4 1605.5 1566.7 208.6 1857.6 298.7 122.1 316.9 457.7

obs_info.dp 592.2 442.0 18.4 16.4 298.6 267.9 1021.7 717.6 147.5 2313.9 306.5 123.6 237.3 301.1

obs_spitzer.dp 867.1 809.0 19.3 19.9 457.6 439.0 1075.3 1181.0 167.4 1966.8 377.1 150.9 404.5 289.8

obs_temp.dp 551.0 870.4 19.1 16.7 369.8 410.3 1162.2 1637.7 245.4 1871.0 340.4 165.9 310.2 187.4

msg_bt.sp 902.7 857.7 20.8 18.3 527.6 452.8 1733.6 979.8 213.2 2010.2 401.7 184.8 396.3 270.3

msg_lu.sp 714.1 915.4 19.5 17.2 454.6 427.6 1344.0 1784.3 326.4 2743.2 462.0 187.8 403.9 314.2

msg_sp.sp 749.6 728.6 20.5 18.2 439.4 443.6 2441.2 1663.2 165.0 2166.5 393.2 191.8 398.1 211.3

msg_sppm.sp 845.7 813.6 72.6 69.8 880.3 844.7 1504.3 2113.0 245.9 1672.0 461.5 312.3 1007.1 1017.1

msg_sweep3d.sp 911.1 663.9 19.0 25.1 638.4 363.7 1172.6 1732.2 187.0 2641.8 370.6 99.5 908.3 498.8

num_brain.sp 897.2 919.6 19.2 17.3 625.9 429.5 1871.9 1326.6 248.5 2198.7 342.2 157.6 323.7 202.8

num_comet.sp 840.0 805.8 21.0 18.1 409.5 430.6 1844.2 1613.9 253.1 2254.3 340.9 166.8 384.3 271.3

num_control.sp 821.8 912.7 19.4 16.9 705.3 460.8 1376.3 1443.0 338.7 3260.9 296.2 150.1 334.5 301.0

num_plasma.sp 462.5 568.0 22.1 39.0 275.4 342.0 1137.8 758.0 126.2 1289.7 406.0 105.6 2403.4 757.6

obs_error.sp 511.3 532.2 19.9 18.4 297.8 294.7 556.8 503.8 149.6 865.6 267.9 129.8 245.4 328.9

obs_info.sp 474.0 444.2 18.3 16.0 254.4 245.0 611.4 739.5 113.8 1152.7 125.1 134.1 206.5 244.3

obs_spitzer.sp 871.0 973.1 19.5 17.7 385.1 399.0 1058.4 1029.7 136.6 1506.3 390.4 154.8 392.8 197.3

obs_temp.sp 596.5 799.3 18.2 17.0 393.6 546.6 1252.2 2048.7 206.0 2447.8 286.4 136.4 281.2 203.6

GeoMean 749.1 756.2 21.6 20.7 476.5 447.4 1385.1 1379.4 228.7 2211.0 355.6 159.5 449.3 330.3

Dataset LZO Snappy



the 26 tested datasets and outperforms all of the evaluated compressors except Zstd. More 

importantly, our analysis represents a first step in a new direction aimed at improving our 
understanding of how to build effective domain-specific compression algorithms. First, by 

systematically generating candidates and analyzing the structure of the best resulting algo-
rithm, we were able to gain insight into its operation and learned how to handle mixed-

precision datasets. Second, we were able to demonstrate that a competitive algorithm can 

be created based solely on transformations that do not process data at bit granularity. 

In future work, we would like to employ our approach in other domains to further improve 

our understanding of what makes an effective compression algorithm. To enhance the 

throughput, we intend to add optimized code generation that can interleave the operation 
of consecutive components and thus avoid repeated writing out and reading in of data be-

tween each pair of components. To boost the compression ratio, we could include bit-gran-
ularity components. Moreover, we want to study algorithms like Zstd and extract the key 

components from them so that we can synthesize even better algorithms. 
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