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Abstract—Improving energy efficiency is an ongoing chal-
lenge in HPC because of the ever-increasing need for
performance coupled with power and economic constraints.
Though GPU-accelerated heterogeneous computing systems
are capable of delivering impressive performance, it is
necessary to explore all available power-aware technologies
to meet the inevitable energy efficiency challenge.

In this paper, we experimentally study the impacts of
DVES on application performance and energy efficiency for
GPU computing and compare them with those of DVFS
for CPU computing. Based on a power-aware heterogeneous
system that includes dual Intel Sandy Bridge CPUs and
the latest Nvidia K20c Kepler GPU, the study provides
numerous new insights, general trends and exceptions of
DVEFS for GPU computing. In general, the effects of DVFS on
a GPU differ from those of DVFS on a CPU. For example,
on a GPU running compute-bound high-performance and
high-throughput workloads, the system performance and
the power consumption are approximately proportional to
the GPU frequency. Hence, with a permissible power limit,
increasing the GPU frequency leads to better performance
without incurring a noticeable increase in energy. This
paper further provides detailed analytical explanations of
the causes of the observed trends and exceptions.

The findings presented in this paper have the potential
to impact future CPU and GPU architectures to achieve
better energy efficiency and point out directions for designing
effective DVFS schedulers for heterogeneous systems.

Keywords-DVFS in GPU Computing, Energy-Efficient
Computing, Dynamic Voltage and Frequency Scaling

I. INTRODUCTION

In recent years, GPU accelerated heterogeneous com-
puting has become an important high performance com-
puting technology. A recent survey of the top 500 su-
percomputers suggests that about 8% of them are het-
erogeneous systems based on General Purpose Graphics
Processing Units (GPGPUs). In addition to typical high
performance microprocessors, these systems also include
a large number of GPGPUs, each of them consisting of
thousands of simple and highly specialized processing
cores running at a relatively low frequency. During compu-
tation, CPUs offload compute-intensive, highly paralleliz-
able code segments to GPUs for execution acceleration.

By utilizing the aggregated computational capacity of
100x more GPU cores, it has been shown that a hybrid
HPC system with CPUs and GPUs working in tandem can
improve both performance and energy efficiency. However,
improving energy efficiency is an ongoing challenge in

High-Performance Computing (HPC) because of the ever-
increasing need for performance in combination with
constraints in the power budget and economic cost. As a
result, it is necessary to explore all available power-aware
technologies in GPU-based heterogeneous systems.

Dynamic Voltage and Frequency Scaling (DVES) is a
power-saving technology whose aim is to lower a com-
ponent’s power state while still meeting the performance
requirement of the running workload. DVFS has been
widely employed in mobile devices, desktop computing,
and HPC. Recently, high-end GPUs that support DVFS,
such as Nvidia’s K20c, also began shipping.

Previous studies have established that the DVFS tech-
nology provided by CPUs can improve energy efficiency
without degrading performance in HPC. These studies
share a common key idea: judiciously scaling down the
CPU frequency in the presence of processor slack caused
by intensive memory accesses, communications, disk I[/O
accesses or synchronization. However, it is largely un-
known whether DVFS on GPUs can bring similar benefits
to hybrid HPC platforms and it remains unexplored how to
design effective DVFS strategies for GPU-based systems.

In this study, we take an experimental approach to
investigate the effects of GPU DVFS on the performance,
power, energy, and energy efficiency of compute-intensive
workloads on a heterogeneous system that is built upon
Intel’s Sandy Bridge architecture and Nvidia’s Kepler
architecture. Particularly, we seek to quantify the impacts
of GPU DVFS on an actual system, contrast them with
those of CPU DVFS, analyze the factors and causes behind
the general trends, and devise effective DVFS strategies.

In summary, our major findings are the following:

« By quantitatively evaluating the performance, power,
and energy effects of the DVFS technology on a
K20c GPU, we have been able to experimentally
demonstrate that the GPU DVFS impact differs from
CPU DVEFS. Overall, on the matrix multiplication
benchmark used in our study, the performance is
linearly proportional to the GPU frequency when
using a high memory speed. Both the system power
and the GPU power can be approximated by a linear
function of the GPU core frequency for all supported
frequencies. The resulting energy consumption re-
mains constant regardless of the selected frequency.

o For the studied workload on our platform, GPU



acceleration provides better performance (up to 6.7x)
and is more energy efficient (up to 8.7x). Thus, if
a workload can effectively run on a GPU, offload-
ing this workload to the GPU is recommended for
improved performance and energy efficiency.

e As a general trend, a higher GPU frequency delivers
better performance without necessarily consuming
more energy. In contrast, higher CPU performance
states typically consume more energy. These trends
imply that a higher GPU frequency is recommended
as long as the corresponding power consumption falls
within a practical power limit and the GPU memory
subsystem is not a performance bottleneck. Note that
the same conclusion does not apply to CPU DVFS.

o Through detailed power profiles, we observe that
GPU DVES only affects the power consumption on
GPU devices but CPU DVFS impacts the CPU and
other system components. Hence, GPU DVEFS affects
system energy efficiency less than CPU DVFS.

o The problem size is a key factor impacting the
achieved system performance and energy efficiency.
Thus, intelligently scheduling GPU workloads based
on the problem size may result in improved perfor-
mance and energy efficiency.

The remainder of this paper is organized as follows.
In Section II, we provide a brief overview of related
work. Section III describes our experimental methodology
followed by a detailed analysis of the experimental results
in Sections IV and V. Finally, our findings and conclusions
are summarized in Section VI.

II. RELATED WORK

As a powerful energy-saving technology, DVFS is
available on multiple computer components, including
processors [5], [12], memory modules [4], network de-
vices [13], and hard drives [15]. Various types of com-
puting systems, ranging from low-power mobile devices
to high-performance servers have been using DVFS for
power management. Because the literature on DVFS-
related approaches is broad and we are primarily interested
in studying the impact of DVFS on high-performance GPU
computing, we only highlight the most relevant work.

A substantial amount of related work exists that focuses
on DVFS-based power-aware high performance comput-
ing. Previous studies have shown that intelligent DVFS is
able to save energy with minimal performance impact for a
certain class of high performance applications that exhibit
considerable CPU slack during execution. Whereas this
slack can be caused by inter-process communication, off-
chip memory access, disk I/O, or process synchronization,
the general idea of an effective DVFS strategy is to detect
such CPU-slack phases correctly and timely and then
apply appropriate power-performance state transitions. For
example, MPI calls can be intercepted in applications to
locate communication phases during which scaling down
the CPU speed may reduce power without impacting per-
formance [11], [12]. Compilers can detect memory-bound
regions and insert DVFS control commands into these

regions [7], [14]. System-level scheduling can exploit var-
ious types of CPU slack for energy saving by monitoring
and predicting system activities and demands [5], [9].

Due to fundamental differences in architecture and
workload, an in-depth study of the impact of GPU DVFS
in heterogeneous HPC environments is necessary. Real-
izing this need, a few groups have explored the effects
of power-aware technology on early generations of GPUs.
For example, Jiao et al. [10] have studied the power and
performance behavior of three GPU kernels on an Nvidia
GeForce GTX 280 under various GPU frequencies. They
observed that increasing the GPU frequency bound leads
to higher power consumption and better performance ex-
cept for applications involving primarily memory accesses.

Our study differs from previous work in three main
aspects. First, it is based on the experimental evaluation of
a state-of-the-art system that includes the latest GPU and
CPU technology. The Nvidia Kepler GPU and the Intel
Sandy Bridge CPU provide several architectural features
not available in earlier generations. For example, the user
can select the GPU frequency on the K20c but not on the
GTX 280. Second, we analyze the performance and energy
impact of both GPU DVES and CPU DVFS and compare
the two approaches. Third, our study has led to several
new findings that have not been reported previously.

III. METHODOLOGY

We use a combination of experimental investigation
and comparative analysis to study the impact of GPU
DVFS. On the one hand, we collect performance and
power profiles of representative applications under various
DVES settings on a heterogeneous platform and quantify
the actual impacts of GPU DVFS. On the other hand, we
compare the results of GPU DVFS and CPU DVFS side
by side to show their similarities and differences.

A. Experimental Platform

We conduct all experiments on a server node consisting
of dual 8-core Xeon Sandy Bridge E5-2670 processors,
one Nvidia Tesla K20c Kepler GPU card plugged into a
PClIe slot, and 32 GB system memory. Each core of the
E5-2670 processors has a 32kB L1 instruction cache, a
32kB L1 data cache, and a 256 kB unified L2 cache. All
eight cores on a same die share a 20 MB L3 cache. The
cores are DVFS capable and have 16 performance states,
ranging from 1.2GHz to 2.6 GHz in 0.1 GHz increments
and, additionally, 2.601 GHz. Whereas each core of the
E5-2670 supports two threads, we disabled this hyper-
threading feature in our experiments to simplify the DVFS
control and the performance analysis.

The K20c GPU implements the Nvidia GK110 Kepler
architecture. It includes 13 SMX units with a total of
2496 CUDA cores, six 64-bit memory controllers, and
5GB global memory. The GPU cores and memory are
capable of DVFS and support the clock frequencies shown
in Table 1. Note that the core and memory speeds must be
set together as a pair.

The server runs CentOS 6.1 64-bit Linux. For the Sandy
Bridge CPU DVEFES scheduling, we use the cpufreq



Table T
SUPPORTED MEMORY AND CORE FREQUENCY PAIRS ON K20C

Memory Freq. (MHz) | GPU Core Freq. (MHz)
758
705
666
640
614

324 324

2600

interface included in the Linux kernel. For the K20c
GPU DVFEFS scheduling, we use the nvidia-smi utility
provided by Nvidia with the —ac option.

B. Benchmark Selection

We consider two types of workloads. The first type
reflects the characteristics of traditional high performance
computing (HPC) applications, which can be decomposed
into a large number of dependent small tasks. It is suitable
for computing system capability tests by measuring the
time to complete a given problem size and the largest
problem the system can run. The second type of workload
reflects typical high-throughput computing (HTC) appli-
cations, which can be decomposed into a large number
of independent small tasks. It is suitable for computing
system tests that benchmark the overall throughput.

For the HPC workload, we use a modified version of the
matrix multiplication benchmark included in the CUDA
SDK. The code can distribute the computation to GPUs
and CPUs according to a distribution ratio specified by
the user. The code uses a CUDA implementation for GPU
computation and the OpenBLAS implementation [2] for
CPU computation. For the HTC workload, we use TSP
and FSM codes running on the ILCS Framework [3],
which allows the user to specify whether to carry out the
computation by the CPUs, GPUs, or both. A summary of
these benchmark programs is provided in Table II.

C. Performance, Power, and Energy Profiling

We directly collect all performance and power data. Per-
formance data, including the execution time and derived
computation rates like GFLOPS and the task completion
rate, are obtained by instrumenting the programs. Power
data are collected by the eTune power-performance pro-
filing framework [6]. Multiple streams of power samples
are recorded, including the system power measured via
two power supplies, the power of the two CPU packages,
the power of the two memory controllers, and the power of
the GPU card. eTune provides scripts to control the profile
starting, stopping, annotating and logging. These power
data are synchronized with the application execution and
with each other via timestamps.

Specifically, we sampled power streams from the fol-
lowing sources. System power data are sampled by two
external WattsUp power meters that are plugged in be-
tween the computer power supplies and a power outlet.
The CPU power data stem from embedded power sensors
on the Sandy Bridge processors and are gathered via the
Running Average Power Limit (RAPL) interface [8]. GPU

power data come from the embedded power sensor on
the K20c card via Nvidia’s System Management Interface
(nvidia-smi). In this study, we use a sampling interval
length of one second.

D. Performance Metrics

To examine the impact of DVFS, we examine four
classes of performance metrics in our study.

Performance Time-to-solution or execution time is an
essential performance measure. However, to compare per-
formance across different problem sizes or system settings,
a compute rate such as GFLOPS (billion floating-point
operations per second) or a task completion rate is better.
To reveal performance trends, a normalized compute rate
relative to a base configuration is often helpful.

Power Power describes the energy consumption rate
and is related to several physical constraints including
power limits and the thermal envelope. We analyze four
power measures including the system power, CPU power,
GPU power, and the power consumption of all system
components excluding CPUs and GPUs to evaluate the
local and system-wide impact of CPU and GPU DVFS.

Energy Energy is the integral of power over time. Sim-
ilar to the power metrics, we collect four types of energy
measures corresponding to the above four types of power
measures. As energy is not a rate, we only compare energy
values that refer to the same computational problem.

Energy Efficiency Energy efficiency is a combined
metric of performance and power. Among various com-
binations, we use the ratio of the compute rate to power,
or, equivalently, the completed work per unit of energy to
characterize the energy efficiency. The energy efficiency
metric has a unit of GFLOPS/Watt or #Operations/Joule.

IV. IMPACT OF DVFS ON MATRIX MULTIPLY

To analyze the impact of DVFS on GPU-based hetero-
geneous computing systems, we evaluate the performance,
energy consumption, and energy efficiency of the Matrix
Multiply application on the platform described above
under various GPU and CPU DVEFS settings.

A. Experimental Settings

Matrix multiplication is a compute-intensive application
that is representative of many scientific workloads. This
benchmark computes the product of two dense matrices,
i.e., Croxm = Anxk*Brxm. We use square matrices where
n = m = k in our experiments. For a given matrix size
n, the running time complexity is O(n?).

We have modified the benchmark such that the compu-
tation can be distributed across the CPUs and the GPU in
the system according to a user-specified distribution ratio
p. When p = 0%, all computation is performed by the
GPU; when p = 100%, all computation is performed by
the CPUs. For GPU-only computation, the CPU speed is
fixed at 2.6 GHz and the GPU speed is varied between
all available frequencies shown in Table I. For CPU-only
computation, the GPU speed is fixed at the default speed
of 705MHz and the CPU speed is varied between all
available CPU frequencies. Moreover, the GPU energy is



Table II
APPLICATIONS AND BENCHMARKS UNDER STUDY

[ Benchmark ] Description [ HPC/HTC | Characterization [ Origin ]
MatrixMultiply | Dense matrix multiplication HPC Floating-point, compute-intensive | CUDA SDK [1]
TSP Traveling salesman problem HTC Integer, compute-intensive ILCS [3]
FSM Finite state machine HTC Integer, compute-intensive ILCS [3]
Table 111 . . . .
NORMALIZED GFLOPS WITH VARYING MATRIX SIZE AND GPU computing capability. Clearly, increasing GPU frequency
FREQUENCY will increase the GPU’s computing capability and thereby
deliver higher performance.
Freg. 7S8M | 70SM | 666M | 640M ) 614M | 324M Memory-bound execution: If the memory frequenc
Rel. Freq. | (1.08) | (1.00) | (0.94) | (0.91) | (0.87) | (0.46) ry - y lrequency
00 1.07 100 | 094 | 001 086 | 043 were 2600 MHz, the normalized performance at a
800 1.07 | 100 | 095 | 091 | 087 | 035 324 MHz core frequency would be 0.46 for all matrix
1600 1.07 1.00 0.95 0.91 0.87 0.26 . - - - :
3200 107 100 | oox | oo1 0.87 0.25 sizes according to the previous discussion. However, when
6400 1.02 1.00 0.94 0.91 0.87 0.24 the memory frequency is also reduced to 324 MHz, the
9600 1.01 100 | 094 | 091 | 087 | 025 normalized performance at 324 MHz core frequency is
12800 1.05 1.0 | 094 | 091 0.87 | 026 only about 0.25 for n > 1600, implying the execution is

subtracted from the total system energy to reflect the actual
energy cost of a typical system without a GPU.

B. Impact of GPU DVFS on Performance

Figure 1(a) shows the performance of Matrix Multiply
for various matrix sizes and different GPU frequencies.
Based on these results, we observe the following trends.

1) The matrix size significantly impacts the GPU per-
formance, which increases rapidly up to a matrix
size of 1600, above which it remains almost constant
for all GPU frequencies. The maximum achieved
performance is 1.1 TFLOPS, which is close to the
double-precision peak performance of the K20c.

2) For all matrix sizes, the achieved performance is
directly proportional to the selected GPU frequency
except at 758 MHz and at 324 MHz. This trend
is also reflected in Table III, which presents the
normalized performance for each matrix size relative
to that at the default frequency of 705 MHz.

3) At 324 MHz, the performance begins to satiate at a
matrix size of n = 800 and then stays at roughly
1/4 of the performance at 705 MHz.

4) The performance at 758 MHz follows the normal
trend for matrix sizes under 3200 but drops below
the expected trend for larger matrices.

Discussion: There are three distinct limitations that de-
termine the GPU performance on the matrix multiplication
code: 1) compute-bound execution where the performance
is determined by the computing capability of the pro-
cessing units, 2) memory-bound execution where the per-
formance is limited by the available memory bandwidth,
and 3) power-bound execution where the performance is
constrained by the maximum allowed power consumption.

Compute-bound execution: As shown in Table III, when
the memory frequency is 2600 MHz, the performance
is proportional to the GPU’s core frequency, implying
the execution is compute-bound. By “compute-bound”,
we mean the performance of an application for a fixed
problem size is determined by the GPU’s maximum

memory-bound. For memory-bound execution, increasing
the GPU’s core frequency does not increase performance
as it would for compute-bound execution.

Power-bound execution: The GPU performance trend at
758 MHz is the result of the third scenario. As shown in
Figure 2(a) for a matrix size of 9600, after 60 seconds
the power consumption at 758 MHz drops to the same
level as that of the 705 MHz experiment. When the GPU
runs in the maximum performance state for a sufficiently
long time, its internal power and temperature management
automatically lowers the frequency to protect the hard-
ware. This explains why the relative performance shown
in Table III decreases for input sizes above 3200, which
result in a long enough runtime to trigger a frequency
reduction. The fact that the K20c cannot maintain the
maximum frequency of 758 MHz for an extended period of
time also explains why the default frequency is 705 MHz.

C. Impact of GPU DVFS on System Energy

As shown in Figure 1(c), all performance states with a
2600 MHz memory frequency result in similar total system
energy. The largest variation is less than 4%. However, the
energy consumption at 324 MHz is 2.3x as large as that
at the other frequencies.

The similar energy consumptions can be explained by
three relations: (1) the energy equation ¥ = P x t, (2) the
inverse linear relation between execution time and GPU
frequency, i.e., t %, and (3) the roughly linear relation
between the system power and the GPU frequency for
the available GPU performance states with a 2600 MHz
memory frequency.

D. Impact of GPU DVFS on System and GPU Power

As mentioned in Section III, we collect power profiles
from the power supplies, CPU packages, and the GPU
card for all test cases. Figure 2 provides the GPU and
CPU power profiles at various frequencies for a matrix
size of 9600. These power profiles reveal the following.

1) GPU DVFS only affects the power consumption of

the GPU card. During computation, the GPU power
increases to 56 Watts at 324 MHz and 218 Watts
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(a) GPU power profile for a matrix size of 9600

at 758 MHz. Meanwhile, the power consumption of
all other components (excluding the GPU) stays at
around 178 Watts. In contrast, CPU DVEFS causes a
considerable power variation not only in the CPUs
but also in other system components. During com-
putation, the CPU package power ranges between 81
Watts at 1.2 GHz and 209 Watts at 2.6 GHz, and the

0
0

50 100 150 200 250 300

Time (seconds)

350 400 450 500

(b) CPU power profile for a matrix size of 9600

2)

Power profiles of Matrix Multiplication. The matrix size is 9600 x 9600. 100 iterations are shown for GPU computing in Figure 2(a) and
30 iterations are shown for CPU computing in Figure 2(b). The power profile for the GPU running at 324 MHz is incomplete.

power consumption of the other system components
excluding the CPUs and GPUs increases from 85
Watts at 1.2 GHz to 129 Watts at 2.6 GHz.

When idle, the GPU power consumption is roughly
16 Watts for all performance states whereas the CPU
idle power is much higher. In addition, the CPU idle
power increases with increasing processor frequency



from 45 Watts at 1.2 GHz to 83 Watts at 2.6 GHz.

3) Under load, the GPU power linearly increases with
the GPU frequency at about 0.5 W/MHz excluding
324 MHz performance state.

4) During execution, the GPU power is constant over
time for all available GPU frequencies except
758 MHz, where it drops by 18 Watts after 60
seconds. This power drop coincides with the afore-
mentioned lowering of the GPU frequency from
758 MHz to 705 MHz triggered by the GPU’s in-
ternal thermal management and power capping.

5) Coincidentally, the CPU packages and the GPU card
consume similar amounts of power when all cores
are running at their default speeds. In this case, the
GPU card consumes 190 Watts of power and the two
CPU packages consume 200 Watts. However, GPU
computing causes a higher system power consump-
tion (362 Watts) than CPU computing (338 Watts)
because GPU computing still uses the host CPUs as
the GPU is only a co-processor.

E. Impact of GPU DVFS on Energy Efficiency

To quantify the combined effects of DVFS on perfor-
mance and energy, we derived energy efficiency numbers
from the performance and energy data and summarize the
results in Figure 3. We characterize the energy efficiency
by the metric of Performance/Power, which is equiva-
lent to #Operations/Energy. Because individual component
DVES affects component and system performance metrics
differently, we distinguish energy efficiency at the compo-
nent and system levels. Our findings are as follow.

First, the matrix size significantly impacts the energy
efficiency at the component and system levels. For GPU
computing, the energy efficiency rapidly increases from
3.5 GFLOPS/Watt to 5 GFLOPS/Watt as the matrix size
grows from 400 to 1600. The efficiency remains relatively
stable when the matrix size is further increased.

Second, at the GPU device level, there are obvious dif-
ferences between the DVFS settings. Among the available
settings with a memory frequency of 2600 MHz, 614 MHz
delivers the highest energy efficiency and 758 MHz the
lowest for fairly large data sizes (n > 1600). 324 MHz is
the least efficient for large data sizes. A noteworthy obser-
vation is that 758 MHz is not most energy efficient even
though it delivers the highest performance. The maximum
energy efficiency at the device level is 6.28 GFLOPS/Watt,
which is achieved at 614 MHz for a matrix size of 12800.

Third, the energy efficiencies at the system level show
different trends. With the exception of 324 MHz being
the worst due to a significantly longer execution time,
all other performance states follow a similar energy ef-
ficiency curve. This similarity implies: (1) Since all GPU
frequencies except 324 MHz are equally energy efficient,
performance metrics such as execution time or GFLOPS
are needed to determine the optimal configuration; and (2)
effective DVFS scheduling at the component level does not
necessarily lead to a noticeable improvement in efficiency
at the system level.

Fourth, the impact of CPU DVFS on the energy effi-
ciency significantly differs from that of GPU DVES in
the following aspects. Overall, GPU computing is 5.6x
as energy efficient as CPU computing when using the
default settings and 4.6 x when using the optimal settings.
Unlike GPU DVFS, CPU DVES significantly affects the
system level energy efficiency, implying practical benefits
of CPU DVFS on system energy optimization. In addition,
the growth of the energy efficiency with matrix size does
not stop within the range of matrix sizes we have studied.

FE. Comparison between GPU DVFS and CPU DVFS

The effect of CPU DVFS on the performance, energy,
power, and energy efficiency as shown in Figures 1(b),
1(d), 2(b), 3(b) are quite different from those of GPU
DVES in the following aspects.

First, GPU computing and CPU computing result in
different absolute values in performance, energy, and ef-
ficiency for the same matrix size. When the GPU and
CPUs run at their default frequencies, the two CPUs only
deliver % of the GPU’s performance but consume about 5 x
more energy. In our experiments, the maximum achieved
performance is 213 GFLOPS on the studied matrix sizes
when all 16 CPU cores run at 2.6 GHz with hyperthreading
disabled. For reference, the theoretical peak performance
of two SandyBridge E5-2670 CPUs is 332.8 GFLOPS
when hyperthreading is enabled. This performance gap
between GPU and CPU computing is the primary cause
for the gaps in energy consumption and energy efficiency.

Second, while a higher frequency generally results in
higher performance for both GPU and CPU computing,
CPU DVEFS has a larger impact on application perfor-
mance with a swing amplitude of up to 50%. The larger
impact is mainly due to the larger range of available
CPU frequencies. Due to the memory hierarchy, CPU
computing performance is not directly proportional to the
CPU frequency. As different CPU performance states may
deliver similar application performance, CPU DVFS has
the potential to save energy with little performance impact.

Third, the CPU’s computing performance increases with
the matrix size and does not plateau out for the set of
matrix sizes we studied. This implies that, on a single
system with the current configuration, CPU computing is
capable of solving larger problems than GPU computing.

Fourth, CPU DVFS has a larger impact on the system
energy efficiency in CPU computing than GPU DFVS
in GPU computing. Consequently, CPU DVFS provides
more energy saving opportunities than GPU DVFS in
high-performance computing, even though, in general,
GPU accelerated heterogeneous computing is much more
energy efficient than traditional CPU computing.

V. IMPACT OF DVFS ON TSP AND FSM

We use TSP and FSM to demonstrate the impact
of DVFS on compute-intensive high-throughput comput-
ing. The performance is presented as a compute rate in
work/time and energy efficiency as a work/energy ratio.
We focus on a single large data size that satiates all
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Figure 4. TSP performance and energy efficiency with various DVES settings

processing units and delivers high throughput. Figures 4(a)
and 4(c) correspond to GPU computing on a K20c with
various GPU DVFS settings and Figures 4(b) and 4(d)
correspond to CPU computing on 16 CPU cores with
various CPU DVEFS settings. In the latter figures, energy
efficiency is total completed work divided by system
energy, which excludes the GPU energy consumption. In
GPU computing, all CPUs run at the default 2.6 GHz. We
focus on TSP as the DVFES trends on FSM are very similar.

The GPU frequency proportionally affects the perfor-
mance without the usual exception at 324 MHz, as shown

in Table IV. This proportional relation indicates that TSP’s
performance is predominated by computation and not
memory accesses. TSP’s energy efficiency also increases
with frequency but not in a directly proportional fashion
due to the energy consumption of other components.
For TSP, the highest GPU frequency delivers optimal
performance and energy efficiency and consumes the least
amount of energy for a given amount of work.

In CPU computing, the CPU frequency also signifi-
cantly affects the performance and the relation is close
to directly proportional. The highest frequency delivers



Table IV
NORMALIZED PERFORMANCE AND ENERGY EFFICIENCY FOR TSP

Freq. 758M | 705M | 666M | 640M | 614M | 324M

Rel. Freq. (1.08) | (1.00) | (0.94) | (0.91) | (0.87) | (0.46)
Performance 1.07 1.00 0.94 0.91 0.87 0.46
Energy Eff. 1.02 1.00 0.96 0.95 0.94 0.61

the best application performance, which is expected as
TSP is compute intensive. The energy efficiency first
increases as the frequency increases but then decreases as
frequency increases further. The most energy efficient state
is between 2.4 GHz and 2.5 GHz. The highest performance
state is not the most energy efficient and thus consumes
more energy for a given amount of work.

Overall, when the GPUs and CPUs run at the default
performance states, GPU computing is 6.7x as fast and
8.7x as energy efficient as CPU computing. Note that
these numbers are larger than those for MatrixMultiply
because all GPUs are fully utilized for TSP. Even the worst
GPU computing performance is about 3x as good as the
best CPU computing performance, while the lowest GPU
computing energy efficiency is 5x as good as the highest
CPU computing energy efficiency.

VI. CONCLUSIONS

In this paper, we experimentally study the effects of
CPU and GPU DVES on the performance and energy
efficiency of scientific workloads on a GPU-accelerated
heterogeneous system built upon the state-of-the-art Intel
Sandy Bridge architecture and the Nvidia Kepler archi-
tecture. This study provides first-hand quantitative data
describing the general trends and exceptions of the impact
DVES has on heterogeneous platforms.

We find that DVFS in GPU computing behaves signifi-
cantly differently from DVFES in CPU computing regarding
energy efficiency. However, both technologies result in
similar performance trends: high performance states gener-
ally deliver better application performance. For compute-
intensive high performance and throughput applications
with fairly large data sizes, all GPU DVEFS settings except
the lowest one consume the same amount of energy with
similar system energy efficiency. Consequently, the highest
available GPU DVES setting is optimal in terms of both
performance and energy efficiency. In practice, the default
setting, which is the second highest, seems to be the one
to go with because the highest setting may cause thermal
and power emergencies.

In the future, we will expand our work to a wider spec-
trum of GPU applications that stress different behaviors,
including compute- and memory-bound codes as well as
regular and irregular codes, and develop analytical models
to guide energy-aware GPU computing.
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