Securing Mobile CPSs against Stealthy Attacks
PI: Mina Guirguis – Texas State University

http://cs.txstate.edu/~mg65/mcps

Motivation:
– Mobile Cyber-Physical Systems (Mobile CPSs) will be pervasively integrated into our physical world
– How to ensure the security and safety of Mobile CPSs?

Challenges:
– Reliance on wireless technology
 • Easy to jam and interfere with
– Complexity with real-time, energy and mobility constraints
 • Widens the malicious opportunities
– Attacks are not “random noise”, but are well orchestrated
 • Studies that focus on random noise and disturbance do not apply

Scope of work:
– Identifying stealthy attacks
– Developing defense mechanisms

Methodology: Identifying Stealthy Attacks

- Markov Decision Process
 – State of the system
 – Transitions

- Offense strategy
 – Aims to evolve the system into “bad” states (Z)
 – Pays a price when attacks
 – Gains a reward when inflicts damage
 – Identifies policies that maximize the cumulative rewards

- Exact Policy Iteration
 – Optimal policies can be obtained
 – Value determination: expected cost-to-go values are computed
 – Policy improvement: a better policy is generated

- The curse of dimensionality:
 – Large state space makes it computationally infeasible to obtain exact solutions [Bellman]

- Approximate Policy Iteration
 – Relies on Monte Carlo simulations
 – Characterizes states based on a set of feature
 – Uses a parametric cost-to-go approximation for the value function [Bertsekas]

Stuck in Traffic (Sit) Attacks on Intelligent Transportation Systems

- The setup
 – Decision points reflect loads on segments
 – Drivers make informed decisions
 – Attackers aims to cause congestion

- Scenarios
 – Traffic optimization

- Damage
 – Degree of imbalance

- Cost
 – Number of vehicles affected

http://arxiv.org/abs/1210.5454

Stealthy Attacks on Target Tracking Applications

- The setup
 – Target moves randomly
 – Agent seeks to find the target
 – Attacker aims to hinder tracking

- Scenarios
 – Search and rescue
 – Border control

- Damage
 – Distance between the agent and the target
 – Negative if target is found

- Cost
 – Different values for control and measurement signals

Collaborators: George Alia (UCF), Vu Nguyen (Texas State), Janiece Kelly (Texas State) and Seth Richter (LeTourneau)

Interested in meeting the PIs? Attach post-it note below!

NSF Secure and Trustworthy Cyberspace Inaugural Principal Investigator Meeting
Nov. 27 – 29th 2012
National Harbor, MD