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Abstract— Cyber-Physical Systems (CPS) employing mobile
nodes rely on wireless communication in many critical ap-
plications. Due to interference and intentional jamming by
adversaries, mobile nodes may fail to communicate with each
other causing severe performance consequences. In this paper,
we present a unifying approach for identifying attacks that
target Mobile CPS applications. The attack policies are obtained
as solutions to Markov Decision Process (MDP) problems, in
which a decision to interfere with a signal on a given link is
based on the current state of the system. Through applying
approximate policy iteration methods, efficient attack policies
that only interfere with a selective set of signals between the
mobile nodes are derived to maximize damage while minimizing
exposure and detection. The proposed approach is instantiated
on pheromone-based coordination methods that are used in
reconnaissance, surveillance, and search missions in military
operations. The identified attack policies are shown to be more
potent than other attack policies, including myopic, heuristic,
and Denial of Service (DoS) policies.

I. INTRODUCTION

Motivation: Advances in wireless communication technolo-
gies have enabled the development of various Cyber-Physical
Systems (CPS) that employ mobile nodes. For example, in
Intelligent Transportation Systems, communication between
vehicles enables sharing critical information about the road
(e.g., congestion, accidents, etc...) causing vehicles to make
better decisions. In systems that employ autonomous vehi-
cles, communication is required to coordinate tasks such as
tracking targets, covering a region, and carrying out search
and rescue operations. In the above systems, nodes rely
on wireless channels to make decisions (whether directly
through control/measurement signals received, or indirectly
through a human operator). Those decisions, in return,
change the overall state of the system.

Due to the shared nature of the wireless channels used,
the evolution of the overall state of a Mobile CPS is affected
by interference and intentional jamming by adversaries. For
example, if some nodes fail to communicate, their decisions
would impact the whole system in a manner that may not
have been intended. Attacks on Intelligent Transportation
Systems were considered in [1] where it was shown that
failure of communication between vehicles and the infras-
tructure can lead to traffic congestion. There has also been a
lot of research work that studied the impact of noise on the
stability/safety/usability of the system [2]–[9]. Similarly, the
effect of jamming has been shown to cause severe effects that

may cripple the whole system [10]–[14]. Luckily, by their
very nature, these attacks can be easily detected, allowing
some countermeasures to be taken [15]–[17].

But, what if an adversary can force a Mobile CPS to evolve
into inefficient states without continuous jamming? What if
one of the goals of the attacks is to go undetected? And what
if the adversary can optimize the attack policy over when and
which links to attack?
Scope: Unlike traditional attacks that target common net-
working protocols used by Mobile CPS (e.g., TCP, 802.11),
this paper presents a unifying approach to identify dynamic
application-driven attacks. We argue that adversaries are
typically interested in attacking the application itself rather
than the protocols used by the application. By doing so,
they can selectively choose the attack pattern based on
their observation of the application, rather than constantly
exploiting a vulnerability of a given protocol. This way not
only they remain stealthy, but can rather still mount attacks
even if the mobile CPS switches between protocols.

As a particular instantiation of our framework, we expose
vulnerabilities in pheromone-based coordination methods
used in Mobile ad-hoc CPS. Over the past decade, there
has been a constant increase in the usage of drones and
Unmanned Combat Vehicles (UCVs), specially in military
operations [18], [19]. Pheromone-based coordination meth-
ods enable mobile nodes to act independently and yet collec-
tively solve a given problem. Through exchanging messages
depicting different pheromone levels at different locations,
nodes can make cooperative decisions to visit areas more
often, or provide a balanced coverage for a given region, for
example. Pheromone-based coordination methods are known
for their robustness against a wide range of attacks since a
probabilistic approach is adopted for path planning. It is not
clear, however, how would the overall mission objective be
adversely affected by an attacker who can selectively attack
a subset of links between the mobile nodes.
Contributions: Mobile CPS rely on wireless links that carry
important control and measurement signals. Thus, it becomes
important to study their susceptibility to attacks through a
framework that can identify attacks – specially stealthy ones
– in a systematic manner. In particular, this paper makes the
following contributions:
• Unlike protocol-driven attacks, we consider dynamic

application-driven attacks and provide a unifying frame-



work for the identification of optimal/suboptimal attack
policies that are solutions to Markov Decision Problems
(MDPs). The policies obtained capture the best interest
of the attacker – minimizing the cost of the attack while
maximizing the incurred damage. The attack decisions
are based on the current state of the mobile nodes.

• As a case study, we investigate the susceptibility of
pheromone-based coordination methods to attacks and
identify different classes of stealthy attacks based on an
attack cost metric. When the attack cost is very low,
our exposed attacks resemble DoS attacks in which all
the links are attacked, but as we increase the cost of the
attacks, we identify more stealthy ones.

• We develop new metrics that capture discrepancies be-
tween the information available to the different mobile
nodes, which are important from a security standpoint,
since they can be used in mounting potent attacks.

• Through reliance on a set of features – that we were able
to carefully craft – we were able to provide effective
approximation methods for solving a high-dimensional
problem that is otherwise computationally prohibitive.

Paper Organization: In Section II, we survey the related
work this paper pertains to. In Section III we present the
general framework used to identify attack policies on Mobile
CPS. We instantiate this framework in Section IV for ex-
posing attacks on pheromone-based coordination algorithms.
We evaluate the impact of the attacks in Section V and we
conclude the paper in Section VI.

II. RELATED WORK

The research work in this paper is at the intersection of two
research areas: (1) Controlling Mobile CPS and (2) Security
issues raised by the loss and delay of signals between nodes.

The work in [2], [6], [20] consider general frameworks to
study the impact of loss (and delay) of control and measure-
ment signals on the links between connected components and
their impact on the efficiency, stability and usability of the
system. Different studies vary in their assumptions about the
process involved in dropping and/or delaying signals. The
authors in [3] consider the problem of optimal estimation
under a Bernoulli packet dropping process through a time-
varying Kalman filter. They show the existence of a particular
drop rate beyond which the estimation error covariance
becomes unbounded. In [4], the authors consider a packet
loss process that follows a Markov model (rather than the
traditional Bernoulli model). They develop a predictor in
which the gain is selected online to cope with the losses.
In [5], the impact of deterministic dropping rates on the
performance of an optimal controller is assessed. Therein
sufficient conditions to ensure the stability of the system
subject to certain packet loss rates and delays are derived.
The problem of control and estimation under the effect
of common networking protocols (e.g., TCP and UDP) is
studied in [6]. Different studies advocate different actions
for missing measurement and control packets. In [7], the
authors consider a controller that would use zero values for
missed measurement packets. Alternatively, in [8], the use

of timers to generate new control signals in the absence of
fresh measurement packets is considered. The new control
signals are predicted based on the last value(s) of the applied
ones.

Recently there has been a pressing growing concern for
securing control systems [21], [22] with many research
challenges to be tackled [23], [24]. The most related to our
work is the research work in [25], [26]. The authors in [25]
study the performance of a linear control system subject
to various Denial of Service (DoS) attack models on the
measurements and control signals (e.g., random Bernoulli,
constrained and general). They investigate the design of
an optimal feedback controller that minimizes the damage
from various DoS attacks. The study, however, was limited
to a single linear feedback loop and without considering a
specific application to assess the potential impacts. In [26],
the authors consider the effect of surge, bias and geometric
attacks on a linear feedback control system for a Tennessee
Eastman process control system. The study, however, was
limited to a specific set of attacks without aiming to explore
the whole attack space. Other work investigated the impact
of cyber attacks on control systems although oriented toward
power systems [27], [28].

The above works, however, have not considered the impact
of an adversary who is actively deciding which measurement
and control signals reach their intended recipients. The
considered packet dropping processes were independent from
the state of the system and rather static in nature (e.g.,
Gaussian noise is maintained at a constant level over time).
Clearly, an adversary does not need to abide by a particular
process. On the contrary, a smart adversary will adapt his/her
attack policy based on the current state of the system and to
influence future states in order to maximize his/her reward
subject to different costs.

The most related work to our particular instantiation on
pheromone-based coordination methods is the work in [29],
[30]. In [30], few heuristics were developed that aimed to
inflict damage on the nodes through jamming a subset of
the signals between the nodes. In [29], different hazards
that can occur in robot swarms were investigated. One of
those hazards is the complete failure of the communication
modules. This had the effect of the nodes wandering off at
random and not participating in the swarm. In contrast to
the studies above, which were based on heuristics for the
most part, the approach presented in this paper seeks to find
efficient attack policies based on a solution to an optimization
problem in an MDP framework that considers the overall
state of the system and accounts for both the current and
future impact of the attack actions.

In summary, our work differs from all previous
work across three major dimensions. First, we consider
application-driven attacks in sharp contrast to protocol-driven
attacks. Second, the attacks are dynamic and sequential in
nature as they are actively obtained through a mapping
from the current state of the system to the action space
to maximize the attacker’s overall gain. Third, we consider
a systematic approach based on a solution to an MDP,



whereby optimal attack policies are designed to provide
explicit performance guarantees.

III. THE GENERAL FRAMEWORK

In this section we present a unifying framework to model
CPS with mobile nodes in the presence of adversaries.

A. A Unified Model of Mobile CPS with Adversaries

We consider a CPS composed of n mobile nodes deployed
in a hostile environment populated by adversaries. We let
si(k) denote the state of node i at time interval k. The state of
node i can be updated independently, based on the previous
state si(k− 1) and the probability of a transition pi(si(k) =
s1|si(k − 1) = s0) as shown in Figure 1 (a). Alternatively,
the state transition could also depend on control signals as
shown in Figure 1 (b). We let ui(k) denote the control signal
received by node i. Control signals can be received directly
from a specific node (e.g., a base station in a centralized
control), or from other nodes (distributed control). Each
node has a local control component that updates its state in
the absence of fresh control signals. A measurement signal,
yi(k), is generated by node i and fed-back to the system at
time interval k. Due to node mobility, the control and the
measurement signals can only traverse valid network links.
We let L(k) indicate the set of direct links available at time
interval k. These are calculated based on the locations of the
nodes and the radio transmission ranges.
The goal is to evolve the system into an overall state
s(.) that meets particular functions (e.g., reaching a set of
targets, covering an area, avoiding congested areas, etc...).
The system state, s(.) = {si(.)}ni=1, is the joint states of all
the nodes.

To account for adversaries, we let C denote the cost incurred
in interfering with a given link1. Thus, at time interval k, the
adversary has 2|L(k)| options that range from not attacking
any link to attacking all of them, where |L| is used to
denote the cardinality of a set L. We let L̂(k) denote the
set of those links interfered with, where L̂(k) ⊆ L(k). The
control and/or measurement signals traversing any link in
the set L̂(k) are considered lost. To identify stealthy classes
of attacks, we propose reward functions (Equation 1 below)
to model the choice and impact of the adversarial policies
in this environment, and the goal of the attacker is to solve
the optimization problem in (2) over the choice of attack
policies.

R(k) = D(s(k))− C|L̂(k)| (1)

max
µ1,µ2,...

E

[ ∞∑
k=1

γkR(k)|Ik

]
(2)

To clarify, we let the attacker decide when to interfere
and which link(s) to interfere with. Thus, (1) represents the

1For ease of exposition we assume that C is fixed. However, the proposed
framework naturally extends to the case where the cost C` is function of
the attacked link ` ∈ L. We relax this assumption in our evaluation.

reward, R(k), obtained by the adversary at time k based
on a chosen damage function D for driving the system into
state s(k), minus the cost incurred. The adversary aims to
maximize the expected discounted cumulative reward over
time by choosing attack policies (µ1, µ2, etc...) as shown
in (2), where µk : Ik → Ak is the policy at time interval
k mapping the information state Ik ∈ Ik of the system at
time k to an attack action ak ∈ Ak, and 0 < γ ≤ 1 is a
discount factor. The discount factor ensures that the infinite
summation in (2) is bounded. If γ < 1, then gains incurred
far in the future have lesser weight than current gains. It is
worth mentioning that other formulations are also admissible.
In particular, if the attack policy is designed over a finite
horizon, the infinite summation in (2) can be restricted to
a summation over a finite interval T . Also, the case where
γ = 1 is mathematically feasible when the system evolves
to an absorbing cost-free termination state. In Section V we
consider the latter scenario. Figure 1 (c) shows the effect of a
single attack action, that moves the system into an inefficient
state.

B. The Offense Component

To derive the optimal attack policy – for a given cost C
and a damage function D – we iteratively solve the following
Bellman equation [31]:

J(s) = max
a

{
E[R(s, s′, a)] + γ

∑
s′

p(s′|s, a, u)J(s′)

}
(3)

where J(.) represents the value function, representing the
value of being in state s. The first term on the RHS in (3)
represents the immediate stage reward (Equation 1) and the
second term is the future reward. p(.) is the probability of
a transition of the system to state s′ from state s under the
aggregate effect of the control signal u and the attack action
a. The second term is multiplied by a discount factor γ,
which is typically close to 1. Solving the equation above
gives the optimal tradeoff between damage and cost from
the standpoint of the adversary. Note that time dependence is
irrelevant given the infinite horizon formulation in (2), which
leads to a time invariant attack policy and a time-invariant
Bellman equation as in (3).

Due to the large state space, solving the above equation
may not be computationally feasible. Thus, we propose an
approximate policy iteration method [32]–[34]. Exact policy
iteration consists of 2 steps: policy evaluation and policy
improvement. In the policy evaluation step, we start with an
initial policy µ. Then, we solve a system of linear equations
to evaluate the cost function Jµ(s) starting from state s and
using policy µ:

Jµ(s) =
∑
s′

p(s′|s, µ(s)) (R(s, s′, µ(s)) + γJµ(s′)) (4)

where the summation is over the set of states s′ that can be
reached from state s and R(s, s′, µ(s)) is the reward obtained
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Fig. 1. Possible transitions from state S0. (a) An independent transition from state S0 to S1. (b) A controlled transition from state S0 to S1 based on
control u. (c) Attack effect causing a transition to an inefficient state S2 based on the attack action a.

from the transition from s to every state in s′ under policy
µ(s). In the policy improvement step, an improved policy µ̄
is generated according to following equation:

µ̄(s) = arg max
a∈A(s)

∑
s′

p(s′|s, a) (R(s, s′, a) + γJµ(s′))

(5)

The improved policy is the one that maximizes the reward
by selecting the best attack action a, from the set of actions
A(s) available from state s. The improved policy µ̄ is then
used as the new policy and a new iteration starts.

One of the main challenges with exact policy iteration is
the size of the state space. If we let |S| denote the size
of the state space, and |A| the cardinality of the attack
space, the complexity of (4) is O(|S|3) (since it involves
solving a system of |S| linear equations), and the complexity
of (5) is O(|A||S|2). For example, given a 5x5 grid with
6 nodes and 4 links, obtaining an optimal policy would
require O(|256|3+ |24||256|2) steps! Thus, an approximation
becomes mandatory.

In the approximate variant of policy iteration, we approxi-
mate Jµ(s) with a parametric representation J̃r(s):

J̃r(s) =

f∑
j=1

rjφj(s) (6)

where φ = [φ1, . . . , φj , . . . φf ]T is a column of features, r is
a row of weights (one for each feature), and f is the number
of features. The idea is to extract f features that characterize
the state s and approximate Jµ(s) by selecting r that solves
a least square problem (between a Monte Carlo simulation
and the current policy evaluation). The main difficulty is to
judiciously select a representative set of features depending
on the application. It is known that the linear combination
of well chosen features can capture essential nonlinearities
in the reward function [35]–[37].

IV. ATTACKS ON PHEROMONE-BASED COORDINATION
METHODS

In this section, we instantiate the general framework de-
scribed in the previous section for a mobile CPS application
that uses pheromones for coordination between the mobile
nodes.

T

T

BS

Fig. 2. A mobile CPS composed of 3 mobile nodes (N1, N2 and N3), a
base station (BS) and two targets (T). Different color gradients indicate the
pheromone levels.

A. Background

Pheromone-based coordination methods in Mobile CPS
applications has three main characteristics: (1) pheromones
can be pumped from a particular location (e.g., areas of
interest) to attract mobile nodes, (2) pheromones evapo-
rate at a constant rate, and (3) pheromone propagate to
surrounding areas from where they are pumped. Mobile
nodes independently decide their next move by computing
movement probabilities based on the pheromones in the
surrounding environment. In particular, nodes have low prob-
abilities of moving into areas with repulsive pheromones
and high probabilities of moving into areas with attractive
pheromones. As a node moves, it withdraws all the positive
(attractive) pheromones and deposits negative (repulsive)
pheromones at its location to repel other nodes from the area,
resulting in dispersive behavior. Both, attractive and repulsive
pheromones evaporate over time, allowing the nodes to
revisit an area once the pheromones have dissipated. Area of
Interests (AOIs) are regions that periodically pump attractive
pheromones in a location that diffuses to the surrounding
area. These regions will be visited more often than the
surrounding areas. A “pheromone map” denotes the nodes’s
view of the pheromone levels in its environment. Figure 2
shows a Mobile CPS composed of 3 mobile nodes and two
targets. The pheromone levels are depicted using different
color gradients. The figure also shows a central base station
(BS), which sends update information to some of the mobile
nodes and whose exact role will become more clear later in
this section.

Through adjusting the pheromone levels at particular areas



in an environment, one can influence the movement probabil-
ities and create different scenarios for various applications.
For example, when all areas pump pheromones at a given
level, the behavior of the nodes resembles covering an area
equally. Alternatively if an attractive pheromone is pumped at
specific locations, then the nodes would visit those locations
more often than others. Similarly, repulsive pheromones can
be placed in specific locations to indicate obstacles and
barriers the nodes need to avoid (e.g., country borders).
For more information about pheromone-based coordination
methods, we refer the reader to references [18], [19].

B. The Model

Our model consists of discrete-time sequences in which
each mobile node makes a decision based on its own
version of the pheromone map. Each node maintains several
pheromone maps that represent the state of the system: an
internal map, maps for the other nodes (for example to avoid
collision), and an AOI map. The internal map is always
accurate because each node is continuously aware of its own
location. The different maps maintained by a particular node
are updated only when it receives a signal from the other
nodes or when the BS sends an AOI update. The goal of
the mobile nodes is to locate two targets in the shortest time
possible without colliding with each other. The attack policy
is to determine which signal or set of signals to interfere
with in order to minimize the probability of detection and
maximize the damage.

1) Three Pheromone Maps: Next, we describe the details
of our proposed model. Let Ai(k), i = 1, . . . , n denote the
internal map of node i at time k, where n is the total number
of mobile nodes. This map represents the pheromone levels
induced by the motion pattern of node i and the known
evaporation, diffusion and deposit mechanisms described
earlier. Hence, Ai(k) is maintained and updated by, and
perfectly known to, node i. In addition to its own map, each
node keeps track of other nodes’ maps. We let Wi,j(k), i, j =
1 . . . n, i 6= j, denote the map of node j as perceived and
maintained by node i at time k. These maps are based on the
information exchanged between the nodes at different time
steps. As we will describe later, it might be in the interest of
the attacker to attack the exchange of these maps at particular
time steps. Hence, these maps may be inaccurate and may
not reflect an exact picture of the actual pheromone levels
induced by the other nodes. Finally, each node also keeps
an AOI map Ti(k) for the targets and the area of interest.
Again, this map which is exchanged between the nodes, is
subject to attacks and hence not every node may have an
exact version of the AOI map.

2) Motion Dynamics: At each time step, each node
compiles a total pheromone map Mi(k), i = 1, . . . n for
the whole field by aggregating the aforementioned maps
Ai(k),Wi,j(k) and Ti(k). Specifically,

Mi(k) = Ti(k) +Ai(k) +

n∑
j=1
j 6=i

Wi,j(k), (7)

where Ti(k) is always represented by attractive pheromone
levels, while Ai(k) and Wi,j(k) are represented by repulsive
pheromone levels as nodes visit different locations. Each
node decides its next move based on its own aggregate map
Mi. In particular, the next move for node i is decided by
creating a probability wheel based on the pheromone con-
centration in Mi(k) at all possible reachable locations from
the current location Xi(k). The next position Xi(k + 1) for
node i is obtained through a transition probability distribution
and can be stochastically described through

Xi(k + 1) ∼ p(Xi(k + 1) = x′|xi(k) = x,Mi(k)). (8)

where the notation X ∼ p denotes a random variable X
with distribution p. For example, at each time step a node
may be allowed to move up, down, left or right from its
current location, and the probability of each future location
is determined based on the pheromone concentration at the
set of reachable locations as given by the aggregate map
Mi(k) .

3) Potential Attacks and State Evolution: From the at-
tacker’s standpoint, the state of the system s(k) at time k
consists of the locations Xi(k), i = 1, . . . , n, of the different
nodes, in addition to their maintained maps Ai(k),Wi,j(k)
and Ti(k), i = 1, . . . , n. To describe the state evolution, we
consider the time evolution of every component in the state
vector s(k).

The new positions of the nodes follow the motion dynam-
ics in (8). Note that Mi(k) can be calculated from the actual
state components according to (7).

The internal map Ai(k+1) is updated by each node based
on the actual internal map Ai(k), the maps of the other
nodes Wi,j(k), the new position, the evaporation rate e of the
pheromone, the constant value of the pheromone flavor di for
the node deposits, and the diffusion rate p of the pheromone
to the neighboring cells. As such, the internal map updates
can be described through a stationary transformation f as

Ai(k + 1) = fi(Ai(k),Wi,j(k), n(k)) (9)

where n(k) is a spurious component that captures the
randomness induced through the uncertainty of the motion
dynamics. Note that n(k) depends probabilistically only on
the current state through the maps maintained by the nodes.
The transformation fi can be different for different nodes
depending on the pheromone flavor di.

The update of the maps Wi,j(k) is somewhat more in-
volved as it depends on the attack action. To clarify, note
that following each move the mobile nodes exchange their
internal maps. Hence, if the attacker decides not to attack
the message from j to i, then the i-th node obtains an exact
description of j-th internal map. In this case,

Wi,j(k + 1) = Aj(k + 1) (10)

However, if the message from j to i is attacked, the i-th
node does not get the update and obtains Wi,j(k + 1) by
simply decaying the pheromone level based on the known
decay rate.



To describe the evolution of the AOI map Ti we need to
consider multiple factors. First, in our model we assume that
the targets are stationary. Also, the BS transmits the AOI map
to the nearest node and we further assume that this particular
signal cannot be attacked. Thus, one node always maintains
the true pheromone level of the targets from the BS. Let
i0 denote this particular node receiving the update from the
BS at time k. Node i0 broadcasts the updated AOI map and
this broadcast signal is subject to attack. Akin to the previous
scenario, if this signal is not attacked, each node successfully
receives the update, in which case Ti(k+1) will represent the
true AOI map. However, if this signal is attacked, Ti(k+ 1)
is updated by decaying the pheromone levels. Note that the
update is triggered by a signal from the BS at a given time
interval and hence the AOI map need not be updated at each
step. In our current implementation, we consider an update
every m intervals. In a different implementation, we assume
that the AOI map is automatically updated without a trigger
signal from the BS (c.f. Section V).

To summarize, the state evolution is captured through
the motion dynamics (8), the map updates in (9), (10) and
in the previous description. As such, the state evolution
follows the standard MDP prescription in [38] according to
a probabilistic law p(s(k+ 1)|s(k), a(k)), where a(k) ∈ Ak
is the attack action and Ak is the available action space at
time k. Note that Ak depends on k since the available control
actions depend on whether an update of the AOI map is sent
by the BS and also on the closest node during the update. The
time dependence of the action space is shifted to the state
by simply augmenting the state vector with a binary variable
taking the value 1 every m intervals to designate that such
states can be mapped to attack actions on the broadcast signal
of the AOI map through the designed attack policy.

4) Distracting the Coordination Method: The goal of
distracting the coordination between the nodes is to have
them wander aimlessly by jamming a subset of signals
between the nodes, thereby prolonging the duration of the
mission or leading the nodes to collide with each other.
Emulating their stealthy nature, we also associate a cost when
an adversary decides to attack a signal. Hence the cost of an
attack action depends on the cost of attacking a particular
link, as well as the link(s) being attacked. This abstraction
can also capture the time spent by an attacker to interfere
with the communication over a given set of links.

In our implementation we consider a system with Q
stationary targets. The problem terminates if all the targets
are found or in case of collision. Hence, we augment our
state space with an absorbing termination state. The damage
function consists of three components: (i) some function
of the minimum distance between the mobile nodes and
the targets of interest; (ii) a reward for causing a collision;
and (iii) a negative reward for the targets that have been
found. For this particular setup, the damage function D is

instantiated as

D(k) =

n∑
i=1

min
j∈{1,2,...,Q}

d(Xi(k), Pj)

+ α

n∑
i=1

∑
j 6=i

1I{Xi(k) = Xj(k)}

− β
n∑
i=1

Q∑
j=1

1I{Xi(k) = Pj} (11)

where d(U, V ) denotes the distance between U and V and Pj
the location of (the stationary) target j. 1I{} is an indicator
function, α the reward for a collision and β is the cost for
a found target. The middle term in the summation in (11)
corresponds to collision when any pairs of nodes end up in
the same cell. The notion of collision does not necessarily
translate into a physical accident between the nodes, but
rather captures nodes getting into the proximity of each
other leading to redundant work being done. The last term
corresponds to a found target.

The goal is to maximize the total rewards over the choice
of attack policies. Our problem is readily posed as a stochas-
tic shortest path MDP with a termination state. Hence, the
optimal attack policy is stationary and can be obtained as
a solution to the Bellman equation described in (3). This
policy is defined through a mapping, µ : S → A, from the
state space to the action space.

5) Feature Selection and Approximate Policy Iteration:
The optimal policy µ can be generally obtained using a
standard technique such as policy or value iteration. How-
ever, in this context such an approach is computationally
prohibitive considering the size of the state space. Instead,
we resort to an approximate solution based on Approximate
Policy Iteration [38] as described in Section III-B. The main
difficulty lies in choosing an efficient set of representative
features capturing the value of each state. To this end, we
have selected the following set of features:

• Distance between the mobile nodes.
• Distance between the nodes and the AOIs.
• Flag indicating when the AOI map gets updated.
• Map difference of AOI maps between the nodes.
• Map difference between the nodes’ pheromone maps

and the truth map.

We remark that the online computational overhead of the
proposed approach is minimal. In particular, the parametric
representation in (6) is computed offline based on the simu-
lation of independent trajectories starting from different rep-
resentative states. In section V we provide a comprehensive
performance evaluation of our proposed approach based on
the selected features.

V. PERFORMANCE EVALUATION

In this section we report our evaluation of the Approximate
Policy Iteration methods in identifying stealthy attacks on
various systems based on the model outlined in Section IV.
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Fig. 3. System A: Rewards obtained for different attack costs under
different policies.

A. System A

In this setup, we consider a system composed of two
targets (e.g., AOI), two mobile nodes, and a base station
(BS). The BS, which is stationary, sends the AOI map to the
nearest node and is updated every 3 time steps. The area of
operation consists of a 10x10 grid cells with few obstacles
that the nodes must navigate around. Pheromone levels vary
from -20 (to indicate a location that has just been visited by a
node) to 20 (to indicate a location with a target). Pheromone
levels decay by 1 unit every time step. From a particular
location, their propagation decreases progressively by 2 units
into the surrounding locations (e.g., 10, 8, 6, 4, 2, and 0).

The goal of this setup is for the mobile nodes to locate
the two stationary targets in the least amount of time.
Each mobile node decides its next move based on its local
pheromone maps, the AOI map, and the maps of the other
nodes as described in Section IV-B.2. Nodes have higher
probability to move into cells with higher pheromone levels
than those with lower level ones. The mapping of pheromone
levels to probabilities was chosen to ensure that the targets
are reached in the shortest amount of time when no attacks
are mounted.

We consider an attacker who aims to distract the mobile
nodes through interfering with a subset of signals exchanged
between them. We assume that the attacker has full knowl-
edge of the state of the system and that it incurs a cost of C
when it attacks a given link. Thus, at any state, the attacker
can choose between the following actions:

1) No attack with cost 0
2) Attack the signal from node 1 to node 2 with cost C
3) Attack the signal from node 2 to node 1 with cost C
4) Attack both signals with cost 2× C
We instantiate the damage function D based on (11) where

we set α to 500 and β to 100.
We start our API algorithm with 100 representative states

that are chosen randomly from the state space. We use a
myopic policy as a roll-out one in which the actions taken
are based on the immediate rewards without considering
the quality of the future state(s). From each representative

state, we run 40 independent trajectories and we compute the
average rewards across the trajectories. In each trajectory, the
simulation ends once there is a collision or when both targets
are located. A new policy is generated after each iteration
and we track the weight vector r that produces the policy
with the highest reward.

Once we obtain the weight vector, we compare our API
policy against other policies on a completely different set of
states that are also generated randomly. This ensures there
is no intentional overlap between the training data and the
ones we use for evaluation.

With the API method, there is no guarantee that the system
will produce a better policy with each iteration as with exact
policy iteration. Thus, we run the API method over a large
number of iterations and choose the policy that produces the
maximum reward. In many cases, we were able to find the
best policy in the first 20 out of 100 iterations.

Figure 3 shows the rewards obtained for different attack
costs and under different attack policies. In particular, we
compare our API method to several other policies: (1) a no-
attack policy that acts as a baseline, (2) a random attack
policy in which an action is chosen uniformly at random,
(3) a myopic attack in which only the immediate reward
is used in selecting an action without regard to the future
rewards, (4) a DoS attack in which both links are attacked,
(5) a random attack in which at least one link is attacked,
and (6) a distance-based heuristic in which both links are
attacked if a node gets within a certain distance to a target.
We chose a distance of 3 cells since it provided the best
case for this heuristic for comparison. We only show the
interesting region based on the attack costs. If the cost of
the attack is very low, API matches a DoS attack and if
the cost is very high, API matches a no-attack policy. One
can see that API was able to identify potent attacks that can
perform significantly better than other attack policies from
the standpoint of the attacker.

Attack Cost 1.5 2 3 4 5
No-attack 67.3% 71.4% 74.5% 84.8% 89.4%

One signal attacked 29.8% 27.4% 25% 15.1% 10.6%
Both signals attacked 2.9% 1.2% 0.5% 0.1% 0%

TABLE I
DISTRIBUTION OF ACTIONS TAKEN BY API AS WE VARY THE ATTACK

COST FOR SYSTEM A.

Table I shows the distribution of the control actions taken
by API as the cost of the attack is varied. One can see
that API judiciously adapts the actions based on the cost
– becoming less aggressive as the cost of the attack is
increased. Correlating Table I with Figure 3, one can observe
that at the lowest cost, API was performing similar to a DoS
attack, but with a fewer aggressive attack actions (no-attack
action was chosen 67% of the time).

Figure 4 shows the percentage of increase in time to locate
the targets for different costs under all policies in comparison
to the no-attack policy (under which the targets are located
in the shortest time). One can observe that API causes about
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Fig. 4. Increase in time to locate the targets for different costs and under
different policies. Results are presented for System A.

40% increase in the time to locate the targets at lower costs
and about 10% increase at higher costs. Note that a lower
value does not imply a lower reward. Indeed, while the API
policy achieves the highest reward (as seen previously in
Fig. 3), the curve corresponding to the API policy in Fig. 4
sits below that of random attack policies at the high cost
regime. This should come at no surprise since the API policy
adapts both the attack level and its timing in order to achieve
a favorable tradeoff between the damage and the cost, and
thus a higher total reward. As such, Fig. 4 underscores the
adaptivity of API, which is a key feature of the proposed
policy in sharp contrast to all the other policies.

B. System B

In System A we assumed that the attacker is always
successful when mounting an attack. System B considers
the case when the attacker is only successful with a certain
probability. Thus, in System B, the cost of the attack is
incurred whenever the attacker decides to attack, but the
attack is only effective a certain percentage of time.
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Fig. 5. System B: Rewards obtained for different attack costs under
different policies with attack success rate of 75%.

Figure 5 shows similar results to those presented for

System A but for an attack that is successful 75% of the time.
One can see again that API outperforms all other policies
(except at the high-end cost of 5). As mentioned earlier, it
is not always guaranteed that API will converge to a better
policy. Moreover, at high cost, the penalty of incurring the
cost without actually causing any damage becomes higher.

C. System C

System C is a variant of System A in which we assign
different attack costs for attacking different links between
the nodes. This scenario captures different aspects such as:
(1) the attacker maybe closer to one of the nodes and thus
easier for him/her to jam a particular link, or (2) the attacker
is aware of a particular vulnerability on a specific link that
is cheaper to exploit. For System C, we assume the attacker
can decide between the following actions:

1) No attack with cost 0
2) Attack the signal from node 1 to node 2 with cost C12

3) Attack the signal from node 2 to node 1 with cost C21

4) Attack both signals with cost C12 + C21

We study two variants; In System C-1, we set C12 and
C21 to 2 and 4, respectively. In System C-2, we set C12 and
C21 to 1 and 5, respectively. These two systems can also be
put in comparison to System A with a cost of 3, since the
overall cost in all these systems is 6.
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Fig. 6. Systems C-1 (C12 = 2 and C21 = 4) and C-2 (C12 = 1 and
C21 = 5) in comparison to System A (C12 = 3 and C21 = 3).

Figure 6 shows the rewards obtained for System C-1 and
C-2 in comparison to System A. Once again API outperforms
other policies. Notice also how the rewards get higher as the
degree of imbalance between the costs in attacking the links
increases; API was able to capitalize on the weakest link
more often to maximize the effectiveness of the attacks. This
is more evident if we look at the distribution of actions taken.
For System C-1, the distribution was 74.9%, 22.6%, 2.4%
and 0.1%, for actions 1, 2, 3 and 4, respectively, whereas for
System C-2, it was 67%, 31.4%, 1.4% and 0.2%, for actions
1, 2, 3 and 4, respectively.



VI. CONCLUSIONS

There has been a large number of frameworks that cap-
italize on cooperation between mobile nodes over wireless
links to enable new mobile CPS applications. The security
of these systems against jamming attacks becomes a critical
issue as our reliance on these systems continue to grow. To
this end, we have proposed a framework that enables the
identification of different classes of stealthy attacks in a sys-
tematic approach. We have identified vulnerabilities in one
of the common pheromone-based coordination mechanisms
used in Mobile CPS applications. We have shown that by
jamming a small subset of the links, an attacker can distract
the nodes leading to repetitive tasks being done and/or nodes
getting into the vicinity of each other, possibly leading to
collisions. Our results show that the developed attack policies
can adaptively adjust their strength depending on the system
setup. It is shown that the attack policy approaches the DoS
policy in the low cost regime and the no-attack policy in the
high cost regime and in between many classes of stealthy
policies exist. The exposed attack policies outperform other
policies such as myopic, random and DoS attacks. We believe
this work is the first that looks into identifying attacks against
emerging mobile CPS.
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