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Abstract—Systems employing mobile devices (e.g., sensors,
smart phones, robots) are emerging with growing capabilities
in performing a wide variety of tasks. Due to their abundance
and wide deployments, they are posed to play a dominant role in
providing a rich mobile computing platform for various jobs ,
especially for new ones that are created on-the-fly. Realizing
this platform is challenging since it is hard to predict the exact
equipment present in an environment, what types of information
need to be communicated to the devices to execute their tasks,
and how to reprogram these devices. This work proposes a new
on-demand collaborative computing framework that maps a new
job as a set of tasks onto the mobile devices for execution.
The mapping is done in a manner that takes into account the
capabilities of the devices, the dependency between the tasks, the
adjacency of the devices, and the requirements of the requested
new job. Our proposed framework is implemented as a test-bed
in our Mobile Cyber-Physical Systems lab with MICAz sensors
and iRobot Create robots.

I. I NTRODUCTION

With recent technological advances in embedded systems
and wireless communication, mobile devices (e.g., sensors,
robots, cell phones, and other various kinds of networked
devices) are emerging as powerful devices that can sense, com-
pute, and communicate. It has been evident that the collection
of mobile devices can provide a new mobile cloud computing
environment where computation can be split and performed
on different mobile devices in a coordinated manner [1]–[3].
This new computing approach is posed to revolutionize the
way we utilize mobile devices in providing new services and
supporting emerging applications in the near future.

Harnessing the capabilities of this collection of mobile
devices requires new frameworks with novel fundamental
concepts that can take advantage of their diversity. We en-
vision an on-demand computing environment in which new
applications/services can be executed on a set of mobile
devices – with each device executing a specific subset of the
tasks – and the partial results combined to form the ultimate
results. Nevertheless, there are many challenges that need
to be tackled in order to realize such a rich collaborative
computing environment. (a) The available devices may not be
exactly known prior to the deployment of new applications,
neither are their resources nor their capabilities. For example,
we may not know what types of sensors are available for a
monitoring application. This requires programming the devices
on-the-fly after discovering them. (b) While mobile devices
can run specific tasks, they typically do not know how to

execute tasksfor a specific new application. For example,
a temperature sensor may not know at what frequency and
for how long it should collect temperature for an emerging
application. This requires programming the devices in the
context of the application. (c) The available resources andthe
cost of communication between devices may vary a lot based
on the nature of the devices (e.g., processor type, available
storage, communication methods). This requires methods to
find optimized allocations of tasks to devices.

To address these challenges, we present an on-demand col-
laborative computing framework that is capable of discovering
the capabilities of mobile devices present in an environment,
mapping a job as task groups to the mobile devices. The
mapping of the job components to the devices is achieved
in a manner that optimizes different metrics under various
constraints (e.g., time to obtain results, limits on data storage,
overall communication overhead, power consumption). We
believe that our proposed framework is the first to harness
the capabilities of a set of mobile devices for executing
on-demand jobs while taking into account the dependencies
between the tasks, the adjacency of the devices and the degree
of replication for certain tasks. The framework is applicable
in many emergency response situations where the emergency
jobs can be abstracted as workflow models and then mapped
for execution on the available mobile devices.

This paper makes the following contributions: (1) Unlike
traditional code partitioning methods that simply divide pro-
grams into modules, we model a job as a workflow abstraction
that can be mapped for execution on a collection of mobile
devices with the execution of certain tasks pinned to some
devices. The workflow model captures the inherent dependen-
cies between tasks along with various replication strategies
for common tasks. (2) We formulate an optimization problem
for task assignment in which the mapping of a job to devices
optimizes different metrics based on the needs of the applica-
tions. (3) We develop a programming framework that creates
programs to be executed on the devices according to the task
assignment and the types of devices. (4) We evaluate our
proposed framework in our Mobile Cyber-Physical Systems
Lab using realistic test-beds made of MICAz sensors and
iRobot Create robots.

In the following, we first overview our proposed framework
(Section III), and then discuss in details the abstraction model
of a job (Section IV), the job mapping (Section V), the



framework for building diverse device programs (Section VI),
and the task dissemination (Section VII). Finally, we present
the implementation and evaluation of the proposed framework
in Section VIII and conclude in Section IX.

II. RELATED WORK

Recently, there has been a growing interest in utilizing mo-
bile devices in building a mobile computing system. The work
in this paper relates to two main areas of research: partitioning
and offloading computation in mobile cloud computing, and
building and programming mobile cyber-physical systems.

A. Mobile Cloud Computing

In mobile cloud computing, partitioning programs has been
proposed as a means to offload the execution of some tasks
to the cloud [3]–[11]. A typical approach, such as [4], [6],
[7], [9], is to offload mobile code to the cloud in order to save
resource on the mobile devices. The problem is modeled as an
optimization one with the goal to maximize the energy saved,
subject to meeting certain deadlines set by the program. A
few works [3], [10], [12] have looked into the possibility of
utilizing peer mobile devices to provide computing service.
In [12], a probabilistic framework was proposed in which
a program can be partitioned into modules that are mapped
for execution on a set of mobile devices to ensure dealing
with uncooperative and malicious devices without the need
for connections to the cloud. In [3], [10], different middle-
ware frameworks were proposed to support offloading mobile
code to other mobile devices. The middleware frameworks
coordinate offloading and execution among mobile devices.

One common objective of these existing works is to allow
a mobile device to utilize other computing resources to ac-
complish its own work. They target addressing the problems
of saving computation for the offloading devices that offload
computation to other devices. The offloading devices also
need to coordinate their computation with other devices. In
contrast, our work investigates how to map a job to a set of
available devices so that the devices can perform a portion of
the job with their own resources and then collectively complete
the job. The job itself is not initiated or offloaded by any
device, and the coordination among the participating devices
is determined by the job components as they execute.

B. Mobile Cyber-Physical Systems

There have been some efforts in building and programming
mobile cyber-physical systems using the combination of robots
and sensors. In [13], the authors developed a test-bed for
evaluating mobile cyber-physical systems using a number of
autonomous robots and sensors. The goal was to provide a
scheme to drive system-wide assessment that cannot be simply
carried out with simulation experiments. In their work, the
experiments were predetermined so there was no need to
discover, mapping, and deploy code on the devices. In our
framework, we do not limit the system to specific devices,
but rather it seeks to discover the devices and their capa-
bilities and to come up with a mapping of various modules

onto those devices. In [14], a programming framework was
developed to deploy a network of sensors that are linked to
actuators in a customizable manner. The framework uses a
logic-based programming paradigm that enables the dynamic
progammability and configuration of sensor-actuator interac-
tions in wireless sensor networks. However, the programming
approach is suitable to computations that can be expressed
logically. The complexity of many applications is beyond logic
expression. Our framework models a job as a workflow, which
is not limited to logic expression, and can support general
applications.

III. SYSTEM OVERVIEW

In general, an on-demand computing system consists of
a controller and a number of participating mobile devices.
The controller is responsible for discovering the participat-
ing devices, and disseminating executables to the devices to
accomplish the requested jobs. The participating devices are
assumed to be not known prior to the system and thus do
not carry any executables to run on any desired job. Rather,
they participate either on a volunteer basis or an incentiveone
[3]. Incentives for registering mobile devices for executing on-
demand tasks include, but are not limited to, (i) they will have
higher access privileges to information that they otherwise
cannot access; (ii) they will earn credits for completing the on-
demand tasks that can be used to pay their bills; and (iii) they
can initiate their own jobs and request the system to utilize
other participating devices in carrying out the tasks.

The system has a set of jobs that could be created in
advance as a part of an emergency plan. Alternatively, they
may be created on demand for occasional incidents. However,
a job is not an implemented program, but rather an abstraction
of the operations to be performed. A job is designed as a
workflow, which consists of a set of tasks and a set of edges.
The tasks encapsulate a set of specific operations, and the
edges represent the data exchange between tasks. The system
maintains a pool of pre-coded task modules for pre-planned
and potential jobs. Each task module is programmed for a set
of platforms so that they can be built for and executed on
various types of mobile devices later.

When a job is requested, the system dispatches the con-
troller (for example, a robot) to the scene in which the job is
to be executed. The controller carries the abstraction of the job
and the pre-coded task modules. The controller finds and lo-
cates the participating devices and obtains certain information
from them, such as their available computing resource, their
communication capability, their platform type, their hardware
functionality, and so on. After the controller gets a list ofthe
participating devices and their information, the controller maps
the abstraction of the job to the identified devices according to
their capabilities. Then, the controller maps the job as several
groups of tasks to identified devices. The controller buildson-
demand adaptive programs (ODAPs) using the pre-coded task
modules according to the task assignment. Then, the controller
disseminates the ODAPs to the devices. Finally, the devices
execute the ODAPs and accomplish the job.
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IV. A N ON-DEMAND COMPUTING MODEL

In this section, we discuss the modeling of a computing job
and the key features of job components that make the modeling
unique and suitable for deploying a job to a collection of
devices.

A. The Abstraction Model of a Job

A computingjob is defined as a workflow that is composed
of nodes and edges. A node represents a solitarytask, which
is a closed set of operations that must be performed by one
device. To meet the requirements of the job, each task specifies
a set of computing constraints. Anedgerepresents passing the
results form an earlier task to a later one. Each task has ingress
ports and egress ports that act as its interfaces. When a taskis
executed, the result of the task is passed along the edge from
its egress port to the ingress port of the later task. Then, the
later task is executed to process the input data.

An example of the workflow of a computing job is illus-
trated in Figure 1. The job is to locate a person in a shopping
mall. To accomplish this job with using only the security
cameras deployed in the mall may not be sufficient, because
they cannot look into hidden spots and can only provide image
information. Also, the job (locating a person) itself may not be
a part of the work of the mall’s monitoring system. Hence, the
proposed on-demand computing framework will very match
the needs of this job, since it can disseminate the tasks to
the proper mobile devices in the mall and ask them to help
locating the person.

The job is designed to have 6 tasks: capturing images
of people in the mall (T1), recording voices (T2), storing
the captured images (T3), recognizing features of the target
person (T4), sanitizing stored data to remove sensitive personal
and business information (T5), and identifying the possible
locations of the target person (T6). The edges of the workflow
indicate how the captured image and voice data are processed
by the tasks.

Besides utilizing the mall’s monitoring system, the job adds
the voice data and asks the shoppers to use their carry-on
devices to help locate the person. T1 and T2 are the tasks for
multiple mobile devices with cameras or microphones, such
as smart phones of shoppers. Hence, they can be replicated
to multiple shoppers and provide better coverage. The other
tasks mainly process data. They can be disseminated to the
computers of the mall or the laptops and pads of the shoppers.
Both image and voice data will be used by T3 to recognize
the features of the target person.

B. Properties of Job Components

In contrast to a typical computation abstraction in mobile
cloud, the workflow model of a computing job in our work
considers the execution of multiple devices. For example, the
same task can be assigned to multiple devices, and different
tasks can be executed in different devices simultaneously.
These considerations are included as properties of job compo-
nents and allow the framework to maximally utilize available
devices to complete a job.
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Fig. 1. Example of a Workflow

1) Task Properties: A task has three properties as its
signature. We can follow the three properties to build different
ODAPs of the same task for different devices.

The essential property of a task is itsfunctionality, which
defines the operations that the task should perform to accom-
plish the job. But, this property does not specify the exact
coding of the task. Instead, the task will be programmed
according to the actual mobile devices. In Figure 1, T1 can be
performed by a mall’s security camera or a shopper’s smart
phone. The actual programs for the two devices are obviously
different.

Another property is itsreplication – whether a task can be
replicated in a workflow or not. A replicable task is used when
multiple devices can be asked to work on the same task. In
Figure 1, T1 and T2 can be replicated to multiple capable
devices so that they can obtain image and voice data for the
job. But, in this example, the other tasks are not replicated
because they need to aggregate and process the obtained data
in a centralized manner.

The last property is itscommunication interface– the set of
ingress and egress ports of a task along with the data format
passed through the ports. In Figure 1, T4 has two ingress ports.
One accepts voice data and the other accepts image data. It has
two egress ports. One outputs the recognized image features
to T5 to sanitize backuped image data and the other outputs
the aggregation of the recognized image and voice features to
T6 to detect locations.

2) Edge Properties:The property of an edge specifies how
to pass data between two ports. It defines the format of data
passed along the edge, i.e. the number of data items, and the
type and size of each data item. Correspondingly, the egress
and the ingress ports of one edge shall have the same data
format. Because a port can only send or receive data in one
format, all edges that start from the same egress port or end at
the same ingress port have the same data format. In Figure 1,
the edges between the egress port of T1 and the ingress ports
of T3 and T4 have the same data format, even though they
pass data among different pairs of tasks.

V. JOB MAPPING AND TASK ASSIGNMENT

Once the workflow of a job is created, the job is divided to
several groups of tasks. Because it is not known in advance
what and how many devices can be utilized, the task groups
are created on demand and adaptive as well. In the following,
we first explain the idea of task groups, and then formally
model the job mapping problem.
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A. Task Groups

1) Grouping Tasks under Resource Constraints:Although
a job is made of individual tasks, a capable device can execute
multiple tasks. Therefore, the objective of an effective job
mapping method is to group tasks according to the capabilities
of the available devices.

Let Ti be the i-th task, andDp be the p-th device. Letri be
the resource requested byTi, andRp be the resource available
at Dp. Let Gp be the group of tasks assigned toDp.

The mapping shall group adjacent tasks for a device so that
the device can provide the requested resources to complete
the assigned tasks and achieve the desired performance. The
resource constraints are expressed in Formula (1), whereRS()
is a resource function. For example,RS() is a summation
function if the requested resource is storage.

∀p, RS({ri : Ti ∈ Gp}) ≤ Rp (1)

2) External Edges and Overhead Constraints:After map-
ping, the tasks are assigned to different devices. The edges
among the tasks inside the same device become theinternal
edges, while the edges connecting the tasks in different devices
become theexternal edges. Passing data along the external
edges, however, incurs extra communication overhead due
to the delay and the bandwidth consumed for passing data.
Therefore, job mapping needs to consider such performance
overhead as well.

Let Ei be the i-th external edge, andoi be the communi-
cation overhead onEi. For example,oi is the communication
delay overEi. Let Oi be the overhead tolerance onEi. The
tolerance reflects the maximum overhead that will not affect
the job. Thus, the overhead constraints can be expressed in
Formula (2).

∀i, oi ≤ Oi (2)

3) Special COM Task:Passing data along the external
edges requires communication between devices. Hence, we
create a special communication task (COM) to serve this
purpose. For each port connected with an external edge, a
COM task is inserted between the port and the external edge.
Note that a COM task may be created alone for a device if
the device is only needed to forward data.

A COM task takes four arguments: the source egress port,
the destination ingress port, the size of data, and the data to
be transmitted. Since devices use different communicationand
networking protocols, COM tasks will communicate according
to the protocols present.

4) Job Mapping Example:Figure 2 illustrates an example
of job mapping for the workflow presented in Figure 1. Six
devices are identified and assigned proper tasks according to
their capabilities so that they can perform the assigned tasks
as well as satisfy both resource and overhead constraints. For
example, T3 and T5 are assigned to a computer D4 with a
sufficient storage. D5 and D6 are shoppers’ carry-on pads.
They are then utilized for T4 and T6.
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Fig. 2. Example of Job Mapping

T1 and T2 are replicable tasks. Assume multiple devices
(D1 and D2) are identified for the two tasks. D1 is a security
camera that can only capture images, while D2 is a smart
phone that can capture both images and voices. Hence, T1 is
assigned to D1 and T1 and T2 are assigned to D2.

Several COM tasks are created for external edges. But, D3
is a special case because it is needed so that D1 can send data
to D4. Hence, D3 only runs the COM task to forward data
between D1 and D4, and does not perform any tasks in the
original workflow.

B. Problem Formulation of Job Mapping

Given a list of available devices, a job may be mapped in
different ways. Therefore, it is necessary to find the best map-
ping that achieves a certain optimal objective while satisfying
both resource and overhead constraints.

Various optimal objectives can be defined under the resource
and performance constraints. For example, we can set the
optimal objective to maximizing the number of utilized devices
so that the job can be supported by as many devices as possible
and no device will be overloaded to affect their regular work.

To formulate the job mapping problem, we first define
the following binary integers, using the same notations in
Formulas (1) and (2).

• Let bp,q = 1 represent that devicesDp and Dq are
neighbors, and0 otherwise.

• Let ei,j = 1 represent that tasksTi andTj are connected
by edges, and 0 otherwise.

• Let xi,j = 1 represent that the edges betweenTi andTj

are external, and 0 otherwise.
• Let si,p = 1 represent that taskTi is assigned to the

deviceDp.
Assume a job is made ofN tasks andM edges, andL

devices are available for this job. Among the tasks,SR̄ is the
subset of all non-replicable tasks andSR is the subset of all
the other replicable tasks. The job mapping problem is then
formulated as below.
Optimization:

argmax{si,p}

∑

p

(max
i

si,p) (3)

Constraints:
∑

p si,p = 1, ∀Ti ∈ SR̄ (4)
∑

p si,p ≥ 1, ∀Ti ∈ SR (5)
∑

i si,pri ≤ Rp, ∀Dp (6)
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xi,joi,j ≤ Oi,j , ∀Ti 6= Tj (7)

si,psj,qei,j = xi,j , ∀Ti 6= Tj , Dp 6= Dq (8)

si,psj,pxi,j = 0, ∀Ti 6= Tj, Dp (9)

si,psj,qei,j ≤ bp,q, ∀Ti 6= Tj, Dp 6= Dq (10)

∀si,p, xi,j ∈ {0, 1} (11)

The given parameters to the optimization problem include
ei,j , SR̄, SR, ri, Rp, oi,j and Oi,j . The optimization in
Formula (3) is to find the best task assignmentsi,j that
maximizes the number of the selected devices that the tasks
are assigned to.

Constraint (4) states that a non-replicable task shall be as-
signed to only one device. Constraint (5) states that a replicable
task shall be assigned to at least one device. Constraint (6)
formulates the resource constraints in Formula (1). Constraint
(7) formulates the overhead constraints for external edgesin
Formula (2). Constraint (8) states that if two adjacent tasks
are assigned to two different devices, the edge of the two
tasks shall be an external one. Constraint (9) states that iftwo
adjacent tasks are assigned to the same devices, the edge of
the two tasks shall be an internal one. Constraint (10) states
that if two adjacent tasks are assigned to two different devices,
the two devices shall be neighbors. Constraint (11) states that
si,p andxi,j of the optimization are either 0 or 1.

The formulated job mapping problem is essentially an
integer programming (IP) problem. It can be solved or approx-
imate solutions can be found with IP solvers [15]. However,
studying the best algorithms for optimal job mapping is not
the goal of this paper. We will address the algorithms for this
problem in our future work.

VI. FRAMEWORK OF ON-DEMAND ADAPTIVE PROGRAMS

As a job is mapped to multiple groups of tasks and then
disseminated to different devices, the actual programs running
inside the devices vary and are created on demand as well. It
is thus necessary to have a software framework to facilitate
making ODAPs in the controller for the selected devices.

The proposed ODAP software framework is made of three
parts. One part is theODAP templatewhich includes the
basic routines to initialize the device, start the execution of
ODAP, and accept new ODAPs. Another part is theODAP
task modules, which execute the assigned tasks and interact
with other tasks or devices. The template has a programming
interface to add different task modules. The last part is the
ODAP workflow, which captures the subgraph of the job’s
workflow. Each subgraph includes the groups of the tasks and
their edges assigned to a device.

For each specific type of device, the template and the task
modules are coded in advance. When deployed, the controller
generates the ODAP workflows based on the job mapping, and
then uses the ODAP framework of a specific device to plug
the device-specific modules into the device-specific template
to create an actual executable ODAP. The ODAP is then
disseminated to the device.

The template, the task modules, and the workflow are
programmed in XML and high-level programming languages
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for each device so that the whole ODAP can be best optimized
monolithically to produce the final executable for efficient
execution. This approach also provides flexibility in code
development and management.

Without loss of generality, we will use MICAz and TinyOS
[16] as the platform and the programming language to show
the coding examples in the discussion.

A. ODAP Template

The ODAP template is the most basic structure of an
ODAP. It structures an ODAP with a device plane and a task
plane, as illustrated in Figure 3. The template implements the
mechanism of adding the modules (grey boxes) in the device
plane and the task plane to an ODAP and the mechanism
for the modules to interact. The template itself is not task-
dependent and does not implement any functionality of the
modules.

The device plane includes a loading module, a distribution
module, and a configuration module. The loading module
starts the ODAP and then initializes the task modules. The
distribution module broadcasts the capability of the device,
and takes new ODAPs from the external controller in order
to execute new tasks. The configuration module allows an
external controller to remotely configure the parameters used
by the task modules. The three modules of the device plane
are not task-dependent and should be able to run with no task
modules added.

The task plane of the template is a container to include the
assigned task modules. It tags the proper locations where the
task modules are filled in so that the ODAP can execute the
assigned tasks. The task plane specifies four tags for adding
task modules to the ODAP. One is the module declaration tag
“<Components>”, which declares and includes the needed
task modules in the ODAP. The second is the initialization
tag “<Inits>” that allows the loading module to initialize
the task modules. The third is the task tag “<Tasks>” that
is to include the actual workflow of the assigned tasks. The
last is the configuration tag “<Configs>” that allows the
configuration module to configure the task modules.

An example of the ODAP template for TinyOS is illustrated
in Figure 4. Although the example template is programmed
and structured in XML, it follows the programming specifica-
tion of TinyOS. A portion of the TinyOS code is substituted
with XML notations in the template so that the controller

5



<Template>
<TemplateAppC>

c o n f i g u r a t i o n <ODAppC/> {}
i m p l e m e n t a t i o n {

components<LoaderC /> , MainC ,
DelugeC , ConfigC , . . . ;

<Components/>
<Wir ing />

}
< / TemplateAppC>
<TemplateC>

module <LoaderC /> {
uses {

< I n t e r f a c e s />
}

}
i m p l e m e n t a t i o n {

even t vo id Boot . booted ( ){
< I n i t s />
. . . ;

}
<Tasks />
<Conf igs />

}
< / TemplateC>

< / Template>

Fig. 4. Example of an ODAP Template XML for TinyOS

can generate different ODAPs for different jobs and devices.
The template itself will be transformed by the controller toa
TinyOS coding file.

In the device plane, the loading module is “LoaderC”, the
distribution module is “DelugeC” [17], and the configuration
module is “ConfigC”. The three modules are made in advance.
The four key tags in the task plane are highlighted and later
will be substituted with task code. All other tags in the
template will be substituted as well with actual TinyOS code
according to the task assignment.

B. Task Module

A task module contains the actual code for executing a
specific task. As discussed in Section IV-A, a task module
includes both the ports and the functionality of a task. Fol-
lowing the conventional modular design approach, the ports
are the interfaces of the task module, and the functionalityis
encapsulated inside the module.

Besides the task code, two auxiliary routines are added to
the task module. The initialization routine is to initialize the
computing environment for the task. The configuration routine
is to configure the parameters used by the task. For example,
a task averages the received data items periodically. The task
needs a counter and a period. The counter is a variable that
needs to be set to zero by the initialization routine when the
task is started. But, the period is a parameter that needs to be
configured by the configuration routine for a proper average.

Thereby, a task module includes the task code, the ports, the
two auxiliary routines, and the configuration parameters. To
manage the task code, a task module is made of an task XML

<Mod>
<Component>AverageC< / Component>
. . .

< I n i t >

c a l l Average . i n i t (<C i d =”0 ” /> ) ;
< / I n i t >

<Conf ig i d =”0 ”>
c a l l Average . c o n f i g ( cfg , l e n ) ;

< / Conf ig>
<I n g ress i d =”0 ”>

<P a r a m e t e r s> . . .< / P a r a m e t e r s>
c a l l Average . ave rage (<P i d =”0 ” /> ) ;
<Com>

<P a r a m e t e r s> . . .< / P a r a m e t e r s>
c a l l Average . ave rage (<P i d =”1 ” /> ) ;

< /Com>

< / I n g ress>
<Egress i d =”0 ”>

<Retu rnVa l s> . . .< / Re tu rnVa l s>
even t vo id Average . avgDone ( u i n t 1 6t avg ) {

<Return>
<R i d =”0 ”>avg< /R>

< / Return>
}
<Com>

. . .
< /Com>

< / Egress>
< /Mod>

Fig. 5. Example of an ODAP Task Module XML for TinyOS

file and the actual coding files. The task XML file contains
the information for the ports, the auxiliary routines and the
configuration parameters. The task XML file is used by the
controller to plug the task into the ODAP template and only
includes the code necessary to substitute the tags defined in
the template. The majority of task code is kept in the coding
files.

An example of the task XML file is illustrated in Figure
5. The two auxiliary routines are tagged with “<Init>”
and “<Config>”. The code inside the two tags will be
used to substitute the tags “<Inits>” and “<Configs>”
in the ODAP template. The ingress port of the task is
tagged with “<Ingress>”, and the egress port is tagged by
“<Egress>”. The codes associated with the port tags will
be used to substitute the tag “<Tasks>” in the template.
Note that the code in the ports include two parts. One is for
interacting with another regular task module, while the other
is for interacting with a COM task.

C. Workflow

The ODAP framework encodes the workflow in XML as
well. For each device, the workflow is a graph of the tasks
assigned to the devices and the edges connecting the tasks.
Thereby, the workflow for each device is generated by the
controller based on the results of job mapping. The workflow
has two components: tasks tagged by “<Task>” and edges
tagged by “<Edge>”. Different from the template and the task
module, the workflow is not platform-dependent.
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<ODApp>
<Tasks>

<Task i d =”0 ” mod=”0 ”>
<Conf ig i d =”0 ” v a l =”3 ” />

< / Task>
. . .

< / Tasks>
<Edges>

<Edge i d =”0 ”>
<Head mod=”1 ” e g r e s s =”0 ” />
<T a i l i d =”0 ” mod=”0 ” i n g r e s s =”0 ” />

< / Edge>
. . .

< / Edges>
< /ODApp>

Fig. 6. Example of an ODAP Workflow XML

An example of the workflow XML file is illustrated in
Figure 6. Each task includes the “<Config>” tag that
provides the initial values to the configuration parameters.
Each edge includes the “<Head>” tag and the “<Tail>”
tag that provide the information of the task modules and the
corresponding ports connected by the edge.

VII. ODAP D ISSEMINATION

Two main components are involved in code distribution.
One is the code distribution process. The other is the prepa-
ration and organization of task modules.

A. Search and Dissemination Process

The controller interacts with mobile devices through their
distribution modules for code dissemination. The process has
two phases: search and dissemination. In the first phase, the
controller searches for devices and collects the capability in-
formation of the available devices. Such information includes
the available computing resources (such as storage, energyand
CPU speed) and the device information (such as the hardware
platform, the software system, the type of sensors and the type
of communication). Once the controller gets a list of devices
and their capability information, the controller conductsthe
job mapping. If the controller can successfully map the job to
the identified devices, the controller will continue to the next
phase. Otherwise, the controller will continue the search until
it finds sufficient devices to take the job.

In the next phase, the controller builds ODAPs according
to the job mapping. For each device, the controller locates
the task modules for the assigned tasks and the specific
device type, and then generates the ODAP using the ODAP
framework. Then, the controller disseminates the ODAP to the
device. Upon receiving the new ODAP, the device reloads or
reprograms itself with the ODAP, and then runs the assigned
tasks.

B. Task Modules for Devices

Because different devices may be utilized, the controller
group possible devices into categories according their hard-
ware and software architectures. For each device category,

<ModList>
<Mod i d =”0 ” func =”0 ”>

<D e s c r i p t i o n>Average< / D e s c r i p t i o n>
<F i l e P a t h>modules / averageMod . xml< / F i l e P a t h>
<P l a t f o r m dev=”MICAz”>TinyOS< / P l a t f o r m>

< /Mod>
<Mod i d =”2 ” func =”2 ” com=” t r u e ”>

. . .
< /Mod>
. . .

< / ModList>

Fig. 7. Example of a Module Manifest XML

Fig. 8. POC Test-bed

task modules are made in advance as if the complete job is
performed by a single device. A module manifest is also made
in advance to include the information of the task modules for
all device categories. The controller carries the manifestin the
aforementioned search and dissemination process.

An example of the manifest is illustrated in Figure 7.
Each “<Mod>” tag includes (a) a description of the module’s
functionality, (b) the location of the module’s code, and (c) the
platform of the device running this module. It also indicates
if the module is a COM module.

VIII. E VALUATION

We implemented a proof-of-concept (POC) mobile test-bed
for evaluating the proposed framework.

A. Implementation

1) Hardware: Figure 8 illustrates the POC test-bed. It has
a iRobot Create as the base for mobility. It communicates
through a serial port to a Dell Inspiron netbook running Fedora
17. The netbook is also connected to two MICAz motes
running TinyOS through another two serial ports. One mote
is programmed to listening to the participating motes and the
other is to disseminate ODAPs to the selected devices.

The netbook runs the operations. It takes in all of the inputs
from the robot and the motes. It directs the movement of the
Create. When the Create moves, the listening mote detects
other devices. Upon getting a list of devices, the netbook
computes the job mapping and generates the ODAPs. Then,
the netbook moves to the selected devices and disseminates
the ODAPs to them using the disseminating mote.

7
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Fig. 9. ODAPs in Experiments

2) Software: The test-bed modified Deluge for dissemi-
nating ODAPs. Deluge is the code distribution component
in TinyOS. But, it disseminates programs over a multi-hop
wireless network to all devices [17]. For the purposes of the
on-demand computing system, it is desired that each ODAP is
distributed to only one device as opposed to every device in the
network. This enables the controller to disseminate different
ODAPs to different devices in the network.

B. Experimental Settings

We conducted a variety of experiments with the test-bed.
The job of the experiments is to monitor a target. The
workflow of the job itself is in Figure 9(b). As discussed in
Section IV-A, the workflow was created without considering
the actual implementation, but focused on the tasks of the job.
In particular, the tasks of the job are monitoring (T1) and
processing (T2). In experiments, T1 was defined as sensing,
and T2 was defined as averaging the sensing data.

We assume the target is far away. Thereby, a network is
needed for delivering data. We also assume we do not know
in advance what devices around the target can be used for
the job and what devices can be used to make a network to
deliver the monitor data back to the monitor center. We do not
program the sensors for this job in advance either, since we
assume the sensors were deployed before the job occurs.

We deploy several MICAz motes to emulate devices
that have different functionality. In experiments, we set up
some MICAz motes with sensors and the others without.
Because the network is not a part of the job’s work-
flow, the COM tasks will be assigned to some motes
to form an on-demand ad hoc network. When the con-
troller roams, it detects the motes and disseminates the job.
A video demonstration of the experiments is available at
http://www.youtube.com/watch?v=JaoTun-uX7o.

C. Experimental Results

For comparison, we enumerate all possible ODAPs resulting
from the job mapping in Figure 9 and include two baseline
ODAPs as well. One baseline is the ODAP-0 in 9(a), which
has only the device-plane components. As discussed in Section
VI-A, ODAP-0 shall run without any tasks. The other baseline
is the ODAP-J in 9(b), which is for a hypothetical scenario
where one device can accomplish the whole job. Other than the
two baseline ODAPs, the other five ODAPs in Figure 9(c.1)
through (c.5) are possible ODAPs assigned to motes. ODAP-1
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is for the communication motes that only forward data. ODAP-
2 is for the motes that sense only. ODAP-3 is for the motes
that sense and forward data. ODAP-4 is for the mote that only
averages the sensing data. ODAP-5 is for the mote that can
sense, average and forward data.

These ODAPs are disseminated to the selected motes.
Instead of asking the motes to route by themselves, these
ODAPs are configured with proper next-hop addresses for
forwarding data. We measured and compared the computing
resources and communication overheads after the ODAPs are
deployed in the motes. Note that the process of creating,
compiling and disseminating ODAPs is a one-time process
in each experiment. The cost and performance of the process
do not affect the job, and thus are not included in evaluation.

1) Computational Overhead:These ODAPs were compiled
for studying their resource requirements. Figures 10 and 11
show their code size and data size. All the results are compared
to the ODAP-0, because it does not carry any task and
all ODAPs shall have the code of ODAP-0. The table also
shows the increment in code and data due to the assigned
tasks. Although the ODAPs were created from a set of code
components, the resulting code size and data size are not a
simple summation of the code components due to optimization
in compilation.

The code components in the experiments include the loading
module, the distribution module, the configuration module,
the COM modules (Send and Recv), the sensing module
(Sen), and the average module (Avg). Among these modules,
the average module and the configuration module have the
minimum amount of code. Meanwhile, the COM modules
share the radio and communication code with the distribution

8



(a)

OJ

(b.1)

O2 O4

(c.1)

O2 O5

(b.2)

O2

O4

O2

(c.2)

O2

O5

O2

(b.3)

O2 O4O1

(c.3)

O2 O5O1

(b.4)

O2 O4O3

(c.4)

O2 O5O3

base sense average forward

Fig. 12. Sensor Networks with Deployed ODAPs

module. Therefore, the code and data sizes of ODAP-J, ODAP-
2, ODAP-3 and ODAP-5 are similar because they all have the
sensing module. In contrast, ODAP-0, ODAP-1 and ODAP-4
have similar but smaller code and data size, because they do
not have the sensing module.

2) Communication Overhead:Because the job is split and
disseminated to different devices, executing ODAPs incurs
communication overhead to the job. To study the communi-
cation overhead, the ODAPs in Figure 9 were deployed to
sensors to form a variety of experimental sensor networks as
illustrated in Figure 12 to accomplish the job. The job itself
(in Figure 12(a)) is used as the baseline that simply senses
and sends data to a base station. The code deployed to each
mote is marked inside its circle. The motes in gray will sense,
the mote in lattice will average data, and the motes in white
will forward data.

Because more hops are needed to deliver data, extra delays
are incurred with the deployed ODAPs. Figure 13 shows
the delays in the experimental sensor networks. The delays
were measured from when the motes sense to when the base
station receives the data. The maximum hop number is three in
experiments for the networks of Figure 13(b.3), (b.4), (c.3) and
(c.4). Compared with the baseline, the 1-hop delay is around
13.9ms and almost same in all networks. The 2-hop networks
add an extra delay of about9.2ms, and the 3-hop networks
add an extra delay of about18.0ms. Hence, the additional
delay due to multiple hops is proportional to the number of
hops, which is reasonable.

IX. CONCLUSION

This paper presented a new on-demand computing frame-
work that generates mobile programs on-the-fly according
to the needs of emerging jobs and the capabilities of the
available mobile devices. The paper modeled a job as a work-
flow abstraction and formulated the problem of job mapping
and assignment as a constraint optimization one. The paper
provided a new programming framework that manages the
code modules for a diverse set of devices and builds mobile
programs according to the task assignments and the types of
devices. The conducted experiments in our test-bed validated
and demonstrated the feasibility of the proposed on-demand
computing framework.
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