Collaborative Computing On-Demand: Harnessing
Mobile Devices in Executing On-the-Fly Jobs

Thomas Langford Qijun Gu Agustin Rivera-Longoria Mina Guirguis
High Point University Texas State University Texas State University Texas State University
High Point, NC 27262 San Marcos, TX 78666 San Marcos, TX 78666 San Marcos, TX 78666

Abstract—Systems employing mobile devices (e.g., sensorsgxecute taskdgor a specific new applicationFor example,
smart phones, robots) are emerging with growing capabilitts g temperature sensor may not know at what frequency and
in performing a wide variety of tasks. Due to their abundance for how long it should collect temperature for an emerging
and wide deployments, they are posed to play a dominant roleni
providing a rich mobile computing platform for various jobs, application. This requires programming the devices in the
especially for new ones that are created on-the-fly. Realizg context of the application. (c) The available resourcestaed
this platform is challenging since it is hard to predict the exact cost of communication between devices may vary a lot based
equipment present in an environment, what types of informaibn on the nature of the devices (e.g., processor type, availabl

need to be communicated to the devices to execute their tasks o390 communication methods). This requires methods to
and how to reprogram these devices. This work proposes a new find optimized all fi f tasks to devi

on-demand collaborative computing framework that maps a n& Inc optimized aflocalions of tasks 1o devices.

job as a set of tasks onto the mobile devices for execution. 10 address these challenges, we present an on-demand col-

The mapping is done in a manner that takes into account the laborative computing framework that is capable of discimger
capabilities of the devices, the dependency between the kasthe the capabilities of mobile devices present in an envirortmen
adjacency of the devices, and the requirements of the requesl 1 a6ing a job as task groups to the mobile devices. The
new job. Our proposed framework is implemented as a test-bed . : . - .
in our Mobile Cyber-Physical Systems lab with MICAz sensors MaPPINg of the job c_onjponer_wts to the de_V|ces IS achl_eved
and iRobot Create robots. in a manner that optimizes different metrics under various
constraints (e.g., time to obtain results, limits on dateiesie,
l. INTRODUCTION overall communication overhead, power consumption). We
With recent technological advances in embedded systebwlieve that our proposed framework is the first to harness
and wireless communication, mobile devices (e.g., sensdise capabilities of a set of mobile devices for executing
robots, cell phones, and other various kinds of networkesh-demand jobs while taking into account the dependencies
devices) are emerging as powerful devices that can sense, cbetween the tasks, the adjacency of the devices and theedegre
pute, and communicate. It has been evident that the catectof replication for certain tasks. The framework is applieab
of mobile devices can provide a new mobile cloud computirig many emergency response situations where the emergency
environment where computation can be split and performgibs can be abstracted as workflow models and then mapped
on different mobile devices in a coordinated manner [1]-[3for execution on the available mobile devices.
This new computing approach is posed to revolutionize theThis paper makes the following contributions: (1) Unlike
way we utilize mobile devices in providing new services analaditional code partitioning methods that simply dividep
supporting emerging applications in the near future. grams into modules, we model a job as a workflow abstraction
Harnessing the capabilities of this collection of mobil¢hat can be mapped for execution on a collection of mobile
devices requires new frameworks with novel fundamentdévices with the execution of certain tasks pinned to some
concepts that can take advantage of their diversity. We atevices. The workflow model captures the inherent dependen-
vision an on-demand computing environment in which negies between tasks along with various replication strategi
applications/services can be executed on a set of molile common tasks. (2) We formulate an optimization problem
devices — with each device executing a specific subset of floe task assignment in which the mapping of a job to devices
tasks — and the partial results combined to form the ultimadptimizes different metrics based on the needs of the applic
results. Nevertheless, there are many challenges that needs. (3) We develop a programming framework that creates
to be tackled in order to realize such a rich collaboratiyerograms to be executed on the devices according to the task
computing environment. (a) The available devices may not besignment and the types of devices. (4) We evaluate our
exactly known prior to the deployment of new applicationgroposed framework in our Mobile Cyber-Physical Systems
neither are their resources nor their capabilities. Forgla, Lab using realistic test-beds made of MICAz sensors and
we may not know what types of sensors are available foriRobot Create robots.
monitoring application. This requires programming theidey In the following, we first overview our proposed framework
on-the-fly after discovering them. (b) While mobile deviceSection Ill), and then discuss in details the abstractioadeh
can run specific tasks, they typically do not know how tof a job (Section 1V), the job mapping (Section V), the

framework for building diverse device programs (Sectiof), Vlonto those devices. In [14], a programming framework was
and the task dissemination (Section VII). Finally, we presedeveloped to deploy a network of sensors that are linked to
the implementation and evaluation of the proposed framewaactuators in a customizable manner. The framework uses a
in Section VIl and conclude in Section IX. logic-based programming paradigm that enables the dynamic
progammability and configuration of sensor-actuator axter
tions in wireless sensor networks. However, the progrargmin
Recently, there has been a growing interest in utilizing mepproach is suitable to computations that can be expressed
bile devices in building a mobile computing system. The worlgically. The complexity of many applications is beyondio
in this paper relates to two main areas of research: panititip expression. Our framework models a job as a workflow, which
and offloading computation in mobile cloud computing, anigé not limited to logic expression, and can support general
building and programming mobile cyber-physical systems. applications.

Il. RELATED WORK

A. Mobile Cloud Computing [1l. SYSTEM OVERVIEW

In mobile cloud computing, partitioning programs has been In general, an on-demand computing system consists of
proposed as a means to offload the execution of some tagksontroller and a number of participating mobile devices.
to the cloud [3]-[11]. A typical approach, such as [4], [6]The controller is responsible for discovering the parétip
[7], [9], is to offload mobile code to the cloud in order to savéng devices, and disseminating executables to the devizes t
resource on the mobile devices. The problem is modeled asamcomplish the requested jobs. The participating devices a
optimization one with the goal to maximize the energy savedssumed to be not known prior to the system and thus do
subject to meeting certain deadlines set by the program.nat carry any executables to run on any desired job. Rather,
few works [3], [10], [12] have looked into the possibility ofthey participate either on a volunteer basis or an incermine
utilizing peer mobile devices to provide computing servicg3]. Incentives for registering mobile devices for exengton-

In [12], a probabilistic framework was proposed in whiclidemand tasks include, but are not limited to, (i) they wilida

a program can be partitioned into modules that are mappeidher access privileges to information that they otheswis
for execution on a set of mobile devices to ensure dealiggnnot access; (ii) they will earn credits for completing ¢tim-
with uncooperative and malicious devices without the neetmand tasks that can be used to pay their bills; and (iij the
for connections to the cloud. In [3], [10], different midele can initiate their own jobs and request the system to utilize
ware frameworks were proposed to support offloading mobit¢her participating devices in carrying out the tasks.

code to other mobile devices. The middleware frameworksThe system has a set of jobs that could be created in
coordinate offloading and execution among mobile devicesadvance as a part of an emergency plan. Alternatively, they

One common objective of these existing works is to alloway be created on demand for occasional incidents. However,
a mobile device to utilize other computing resources to aa-job is not an implemented program, but rather an abstractio
complish its own work. They target addressing the probleno$ the operations to be performed. A job is designed as a
of saving computation for the offloading devices that offloadorkflow, which consists of a set of tasks and a set of edges.
computation to other devices. The offloading devices aldthe tasks encapsulate a set of specific operations, and the
need to coordinate their computation with other devices. fdges represent the data exchange between tasks. The system
contrast, our work investigates how to map a job to a set wfaintains a pool of pre-coded task modules for pre-planned
available devices so that the devices can perform a porfionamd potential jobs. Each task module is programmed for a set
the job with their own resources and then collectively cagtel of platforms so that they can be built for and executed on
the job. The job itself is not initiated or offloaded by anyarious types of mobile devices later.
device, and the coordination among the participating @evic When a job is requested, the system dispatches the con-
is determined by the job components as they execute. troller (for example, a robot) to the scene in which the job is
to be executed. The controller carries the abstractionefdah
and the pre-coded task modules. The controller finds and lo-

There have been some efforts in building and programmicgtes the participating devices and obtains certain irdition
mobile cyber-physical systems using the combination obt®b from them, such as their available computing resourcer thei
and sensors. In [13], the authors developed a test-bed émmmunication capability, their platform type, their haste
evaluating mobile cyber-physical systems using a number fohctionality, and so on. After the controller gets a listtbé
autonomous robots and sensors. The goal was to provideaaticipating devices and their information, the congothaps
scheme to drive system-wide assessment that cannot beysintipé abstraction of the job to the identified devices accattin
carried out with simulation experiments. In their work, thé¢heir capabilities. Then, the controller maps the job agsdv
experiments were predetermined so there was no needgtoups of tasks to identified devices. The controller builds
discover, mapping, and deploy code on the devices. In ademand adaptive programs (ODAPS) using the pre-coded task
framework, we do not limit the system to specific devicesnodules according to the task assignment. Then, the ctertrol
but rather it seeks to discover the devices and their camhsseminates the ODAPs to the devices. Finally, the devices
bilities and to come up with a mapping of various modulesxecute the ODAPs and accomplish the job.

B. Mobile Cyber-Physical Systems

IV. AN ON-DEMAND COMPUTING MODEL

In this section, we discuss the modeling of a computing job
and the key features of job components that make the modeling Feature
uniqgue and suitable for deploying a job to a collection of .
devices.

T4

A. The Abstraction Model of a Job O egress port O ingress port

A computingjob is defined as a workflow that is composed
of nodes and edges. A node represents a soltsl which
is a closed set of operations that must be performed by one
device. To meet the requirements of the job, each task specifi 1) Task Properties: A task has three properties as its
a set of computing constraints. Axtgerepresents passing thesignature. We can follow the three properties to build déffe
results form an earlier task to a later one. Each task haessgroDAPs of the same task for different devices.
ports and egress ports that act as its interfaces. When astask The essential property of a task is fisnctionality, which
executed, the result of the task is passed along the edge figéfines the operations that the task should perform to accom-
its egress port to the ingress port of the later task. Them, thlish the job. But, this property does not specify the exact
later task is executed to process the input data. coding of the task. Instead, the task will be programmed
An example of the workflow of a computing job is illus-according to the actual mobile devices. In Figure 1, T1 can be
trated in Figure 1. The job is to locate a person in a shoppipgrformed by a mall's security camera or a shopper’s smart
mall. To accomplish this job with using only the securityphone. The actual programs for the two devices are obviously
cameras deployed in the mall may not be sufficient, becaugieerent.
they cannot look into hidden spots and can only provide imageAnother property is itseplication— whether a task can be
information. Also, the job (locating a person) itself mayt be replicated in a workflow or not. A replicable task is used when
a part of the work of the mall’s monitoring system. Hence, th@ultiple devices can be asked to work on the same task. In
proposed on-demand computing framework will very matdghigure 1, T1 and T2 can be replicated to multiple capable
the needs of this job, since it can disseminate the tasksdévices so that they can obtain image and voice data for the
the proper mobile devices in the mall and ask them to hejgh. But, in this example, the other tasks are not replicated
locating the person. because they need to aggregate and process the obtained data
The job is designed to have 6 tasks: capturing imaggsa centralized manner.
of people in the mall (T1), recording voices (T2), storing The last property is itsommunication interface the set of
the captured images (T3), recognizing features of the targegress and egress ports of a task along with the data format
person (T4), sanitizing stored data to remove sensitivequed passed through the ports. In Figure 1, T4 has two ingress.port
and business information (T5), and identifying the pogsibDne accepts voice data and the other accepts image data. It ha
locations of the target person (T6). The edges of the workflawo egress ports. One outputs the recognized image features
indicate how the captured image and voice data are procesged’s to sanitize backuped image data and the other outputs
by the tasks. the aggregation of the recognized image and voice featares t
Besides utilizing the mall’'s monitoring system, the job addT6 to detect locations.
the voice data and asks the shoppers to use their carry-oR) Edge PropertiesThe property of an edge specifies how
devices to help locate the person. T1 and T2 are the tasks i®pass data between two ports. It defines the format of data
multiple mobile devices with cameras or microphones, suglassed along the edge, i.e. the number of data items, and the
as smart phones of shoppers. Hence, they can be replicaig® and size of each data item. Correspondingly, the egress
to multiple shoppers and provide better coverage. The othaid the ingress ports of one edge shall have the same data
tasks mainly process data. They can be disseminated to ftnat. Because a port can only send or receive data in one
computers of the mall or the laptops and pads of the shoppéegmat, all edges that start from the same egress port oriend a
Both image and voice data will be used by T3 to recognizee same ingress port have the same data format. In Figure 1,
the features of the target person. the edges between the egress port of T1 and the ingress ports
of T3 and T4 have the same data format, even though they

B. Properties of Job Components . :
i) o _pass data among different pairs of tasks.
In contrast to a typical computation abstraction in mobile

cloud, the workflow model of a computing job in our work V. JOB MAPPING AND TASK ASSIGNMENT

considers the execution of multiple devices. For example, t Once the workflow of a job is created, the job is divided to
same task can be assigned to multiple devices, and differsaveral groups of tasks. Because it is not known in advance
tasks can be executed in different devices simultaneousihat and how many devices can be utilized, the task groups
These considerations are included as properties of job cempre created on demand and adaptive as well. In the following,
nents and allow the framework to maximally utilize avaiblwe first explain the idea of task groups, and then formally
devices to complete a job. model the job mapping problem.

Fig. 1. Example of a Workflow

A. Task Groups

Tmaoe N s /\:\' C,(Lm 3 I'Com,‘w\i]/ S o Data
1) Grouping Tasks under Resource Constraimfdthough |57 /) \‘Bﬁ%upii———\,i:“:\s\ani,t,i,za,t,i,on)
a job is made of individual tasks, a capable device can egecu 55— :’any)» T
multiple tasks. Therefore, the objective of an effective jo | CO -
mapping method is to group tasks according to the capasiliti | 11 “ComFComag Feapure»Com) D6

of the available devices.

Let 7} be the i-th task, and, be the p-th device. Let; be T2 o
the resource requested iy, andR,, be the resource available
at D,. Let G, be the group of tasks assigned iy,

The mapping shall group adjacent tasks for a device so that
the device can provide the requested resources to complet§1 and T2 are replicable tasks. Assume multiple devices
the assigned tasks and achieve the desired performance. (e and D2) are identified for the two tasks. D1 is a security
resource constraints are expressed in Formula (1), wR8(¢ camera that can only capture images, while D2 is a smart
is a resource function. For exampl&S() is a summation phone that can capture both images and voices. Hence, T1 is

{Voice »»Comy

T4) TTTe6

Com»® Recog. »Com)|

Fig. 2. Example of Job Mapping

function if the requested resource is storage. assigned to D1 and T1 and T2 are assigned to D2.
Several COM tasks are created for external edges. But, D3
Vp, RS({ri : T; € Gp}) < R, (1) is a special case because it is needed so that D1 can send data

to D4. Hence, D3 only runs the COM task to forward data

'2) External Edges and Overhead Constraingsiter map- pepween D1 and D4, and does not perform any tasks in the
ping, the tasks are assigned to different devices. The edgﬁ’@inal workflow.

among the tasks inside the same device becoméntkenal _)

edgeswhile the edges connecting the tasks in different devicBs Problem Formulation of Job Mapping

become theexternal edgesPassing data along the external Given a list of available devices, a job may be mapped in

edges, however, incurs extra communication overhead diifferent ways. Therefore, it is necessary to find the begi-ma

to the delay and the bandwidth consumed for passing dabing that achieves a certain optimal objective while sgpitigf

Therefore, job mapping needs to consider such performarm®h resource and overhead constraints.

overhead as well. Various optimal objectives can be defined under the resource
Let E; be the i-th external edge, and be the communi- and performance constraints. For example, we can set the

cation overhead oifr;. For exampleg; is the communication optimal objective to maximizing the number of utilized dees

delay overFE;. Let O; be the overhead tolerance @). The so that the job can be supported by as many devices as possible

tolerance reflects the maximum overhead that will not affeand no device will be overloaded to affect their regular work

the job. Thus, the overhead constraints can be expressed ifo formulate the job mapping problem, we first define

Formula (2). the following binary integers, using the same notations in
Formulas (1) and (2).
Vi, 0; < O; 2 o Let b,, = 1 represent that device®, and D, are

) . neighbors, and otherwise.
3) Special COM Task:Passing data along the external , | et e;; = 1 represent that tasks and7; are connected
edges requires communication between devices. Hence, we py edges, and 0 otherwise.

create a special communication task (COM) to serve this, | et z;; = 1 represent that the edges betwé@rand T}
purpose. For each port connected with an external edge, a e e>7<ternal, and O otherwise. '
COM task is inserted between the port and the external edge, | ot sip = 1 represent that tas; is assigned to the
Note that a COM task may be created alone for a device if devicéDp.

the device is only needed to forward data. Assume a job is made o tasks and\/ edges, and.
A COM ta_ISk t_akes four argumer_lts: the source egress PYLvices are available for this job. Among the taskg,is the
the destination ingress port, the size of data, and the @atagl et of all non-replicable tasks afg is the subset of all

be trans.m|tted. Since devices use Q|ﬁerent communlcmmm_ the other replicable tasks. The job mapping problem is then
networking protocols, COM tasks will communicate accogj'nformulated as below.

to the protocols present.

4) Job Mapping ExampleFigure 2 illustrates an example
of job mapping for the workflow presented in Figure 1. Six argmazx{s, .y Z(mgx Si,p) (3)
devices are identified and assigned proper tasks according t P
their capabilities so that they can perform the assignekistaConstraints:
as well as satisfy both resource and overhead constraiots. F

Optimization:

example, T3 and T5 are assigned to a computer D4 with a ZP sip = 1,V1: € Sg ()
sufficient storage. D5 and D6 are shoppers’ carry-on pads. > pSip = LV € S ()
They are then utilized for T4 and T6. > Sipri < Rp, YD, (6)

7 j0ij < 04 5,VT; # T (7) Ml

@ >® M2 >
Si,pSj,q€ij = Tij, V1i # Tj, Dp # Dy (8) e L
Initialization|| Configuration || ||Initialization|| Configuration
SipSjptij = 0,VT # T}, Dy 9) code parameters code parameters Task plane
Si,pSi,q€i < Upg VT; # Tj, Dp # Dy (10) #\/ — \f
Vsip, wij € {0,1} (11) Loading Distribution Configuration | | Device plane
The given parameters to the optimization problem include module module module

R A
eij» Sp, Sr, 1i, Rp, 0;; and O, ;. The optimization in \

Formula (3) is to find the best task assignment that
maximizes the number of the selected devices that the tasks
are assigned to.

Constraint (4) states that a non-replicable task shall be
signed to only one device. Constraint (5) states that acaiplie
task shall be assigned to at least one device. Constraint

Fig. 3. ODAP Template

#5r each device so that the whole ODAP can be best optimized
gé%nolithically to produce the final executable for efficient

o) cution. This approach also provides flexibility in code
formulates the resource constraints in Formula (1). Cairstr development and management.
(7) formulates the overhead constraints for external edges Without loss of generality, we will use MICAz and TinyOS
Formula (2). Constraint (8) states that if two adjacent ¢as 6] as the platform and thé programming language to show
are assigned to two different devices, the edge of the e coding examples in the discussion
tasks shall be an external one. Constraint (9) states tiabif '
adjacent tasks are assigned to the same devices, the edgg abDAP Template
the two tasks shall be an internal one. Constraint (10) state

that if two adjacent tasks are assigned to two differentabeyi The ODAP template is the most basic structure of an

the two devices shall be neighbors. Constraint (11) stéigs tODAP' It §tructures an QDAP with a device plgne and a task
T : plane, as illustrated in Figure 3. The template implemdms t
sip andz; ; of the optimization are either 0 or 1. . -) .
k ’ mechanism of adding the modules (grey boxes) in the device

int-le-hgr f?:)m?;?;i?injozpr)na&%gn pliocballﬁrgelzoﬁlsesdegtlglly rgmlane and the task plane to an ODAP and the mechanism
ger prog 9 b : bp or the modules to interact. The template itself is not task-

imate solutions can be found with IP solvers [15]. However, : . .
[15] c{ependent and does not implement any functionality of the

studying the best algorithms for optimal job mapping is na
the goal of this paper. We will address the algorithms fos thlmodules. . . . o
problem in our future work. The device plane |_ncIud(_es a loading module, a_dlstnbutlon
module, and a configuration module. The loading module
VI. FRAMEWORK OF ON-DEMAND ADAPTIVE PROGRAMS starts the ODAP and then initializes the task modules. The
As a job is mapped to multiple groups of tasks and thelistribution module broadcasts the capability of the deyic
disseminated to different devices, the actual programsingn and takes new ODAPs from the external controller in order
inside the devices vary and are created on demand as weltoltexecute new tasks. The configuration module allows an
is thus necessary to have a software framework to facilitz@ternal controller to remotely configure the parameteesius
making ODAPs in the controller for the selected devices. by the task modules. The three modules of the device plane
The proposed ODAP software framework is made of three not task-dependent and should be able to run with no task
parts. One part is th®©DAP templatewhich includes the modules added.
basic routines to initialize the device, start the executid The task plane of the template is a container to include the
ODAP, and accept new ODAPs. Another part is thBAP assigned task modules. It tags the proper locations where th
task moduleswhich execute the assigned tasks and interd@isk modules are filled in so that the ODAP can execute the
with other tasks or devices. The template has a programmiaggigned tasks. The task plane specifies four tags for adding
interface to add different task modules. The last part is thask modules to the ODAP. One is the module declaration tag
ODAP workflow which captures the subgraph of the job’$<Conponent s>", which declares and includes the needed
workflow. Each subgraph includes the groups of the tasks at@gk modules in the ODAP. The second is the initialization
their edges assigned to a device. tag “<I ni t s>" that allows the loading module to initialize
For each specific type of device, the template and the table task modules. The third is the task tagrasks>" that
modules are coded in advance. When deployed, the controlteto include the actual workflow of the assigned tasks. The
generates the ODAP workflows based on the job mapping, dadt is the configuration tag<Confi gs>" that allows the
then uses the ODAP framework of a specific device to plugpnfiguration module to configure the task modules.
the device-specific modules into the device-specific tetapla An example of the ODAP template for TinyOS is illustrated
to create an actual executable ODAP. The ODAP is thém Figure 4. Although the example template is programmed
disseminated to the device. and structured in XML, it follows the programming specifica-
The template, the task modules, and the workflow at®n of TinyOS. A portion of the TinyOS code is substituted
programmed in XML and high-level programming languagesith XML notations in the template so that the controller

<Template- <Mod>
<TemplateAppC <Component-Average G/ Component>
configuration <ODAppC/t {}
implementation{ <Init>
components<LoaderCt, MainC, call Average.initkC id="0"/>);
DelugeC, ConfigC, ...; </llnit>
<Components/> <Config id="0">
<Wiring /> call Average.config(cfg, len);
} </ Config>
</TemplateAppC <Ingress id="0">
<TemplateG <Parameters...</Parameters
module <LoaderCpt { call Average.average id="0"/>);
uses { <Com>
<Interfaces# <Parameters...</Parameters
} call Average.averageP id="1"/>);
} </Com>
implementation{ </Ingress>
event void Boot.booted (){ <Egress id="0">
<lInits /> <ReturnVals-...</ReturnVals
event void Average.avgDone(uintl®6 avg) {
<Returmn>
<Tasks/> <R id="0">avg/R>
<Configs/> </ Returmn>
}
</TemplateGC <Com>
</ Template-
</Com>
)) </Egress>
Fig. 4. Example of an ODAP Template XML for TinyOS </Mod>

can generate different ODAPs for different jobs and devices ~7'9- 5 Example of an ODAP Task Module XML for TinyOS

The template itself will be transformed by the controllerato

TinyOS C°d"_19 file. _ o , . file and the actual coding files. The task XML file contains
In the device plane, the loading module is “LoaderC’, thg,q information for the ports, the auxiliary routines ane th
distribution module is *DelugeC” [17], and the configuratio ¢, ration parameters. The task XML file is used by the

module is “ConfigC”. The three modules are made in advane®«roller to plug the task into the ODAP template and only

The four key tags in the task plane are highlighted and Iati"ﬁrcludes the code necessary to substitute the tags defined in

will be sut_)stituted W_ith task code. _A” other tags in th‘?he template. The majority of task code is kept in the coding
template will be substituted as well with actual TinyOS Codmes

according to the task assignment. An example of the task XML file is illustrated in Figure

B. Task Module 5. The two auxiliary routines are tagged witkl“ni t >”

] ~and *<Confi g>". The code inside the two tags will be
A task module contains the actual code for executingged to substitute the tagsI“ni t s>” and “<Conf i gs>"

specific task. As discussed in Section IV-A, a task modujg the ODAP template. The ingress port of the task is
inclydes both the ports and the func_tionality of a task. Folagged with I ngr ess>", and the egress port is tagged by
lowing the conventional modular design approach, the POMSEGr ess>”. The codes associated with the port tags will
are the interfaces of the task module, and the functionditype ysed to substitute the tagTasks>" in the template.
encapsulated inside the module. Note that the code in the ports include two parts. One is for

Besides the task code, two auxiliary routines are addediffleracting with another regular task module, while theeoth
the task module. The initialization routine is to initi@izhe s for interacting with a COM task.

computing environment for the task. The configuration moeiti

is to configure the parameters used by the task. For exam(Ste, Workflow

a task averages the received data items periodically. ¥te ta The ODAP framework encodes the workflow in XML as

needs a counter and a period. The counter is a variable thell. For each device, the workflow is a graph of the tasks

needs to be set to zero by the initialization routine when tlassigned to the devices and the edges connecting the tasks.

task is started. But, the period is a parameter that needs toTihereby, the workflow for each device is generated by the

configured by the configuration routine for a proper averageontroller based on the results of job mapping. The workflow
Thereby, a task module includes the task code, the ports, ties two components: tasks tagged kyTask>" and edges

two auxiliary routines, and the configuration parameters. Tagged by ¥ Edge>". Different from the template and the task

manage the task code, a task module is made of an task Xktiodule, the workflow is not platform-dependent.

<ODApp> <ModList>
<Tasks> <Mod id="0" func="0">
<Task id="0" mod="0"> <Description-Average</ Description>
<Config id="0" val="3"/> <FilePath>modules/averageMod . xril FilePath>
</ Task> <Platform dev="MICAz">TinyOS/Platfornm
</Mod>
</ Tasks> <Mod id="2" func="2" com="true"”>
<Edges>
<Edge id="0"> </Mod>
<Head mod="1" egress="0"%
<Tail id="0" mod="0" ingress="0"/> </ModList>
</Edge>
</I.E.d.ge$ Fig. 7. Example of a Module Manifest XML
</ODApp>

Fig. 6. Example of an ODAP Workflow XML
An example of the workflow XML file is illustrated in
Figure 6. Each task includes the<Confi g>" tag that
provides the initial values to the configuration parameters [
Each edge includes the<Head>" tag and the «Tai | >”

tag that provide the information of the task modules and the
corresponding ports connected by the edge. B -

VIl. ODAP DISSEMINATION Fig. 8. POC Test-bed

Two main components are involved in code distribution.
One is the code distribution process. The other is the pre
ration and organization of task modules.

R8sk modules are made in advance as if the complete job is
performed by a single device. A module manifest is also made
A. Search and Dissemination Process in advance to include the information of the task modules for

The controller interacts with mobile devices through thefp!! device <_:ategor|es. The conFroIIer_cames the manifetie
distribution modules for code dissemination. The process Hforementioned search and dissemination process.

two phases: search and dissemination. In the first phase, thé" €xample of the manifest is illustrated in Figure 7.
controller searches for devices and collects the capgfiit Each “<Mbd>" tag includes (a) a description of the module’s

formation of the available devices. Such information ingls fUnctionality, (b) the location of the module’s code, anjit(e

the available computing resources (such as storage, eaa(igyplatform of th(_e device running this module. It also indicate
CPU speed) and the device information (such as the hardwi{rit® module is a COM module.

platform, the software system, the type of sensors and fie ty VI
of communication). Once the controller gets a list of desice) .
and their capability information, the controller conduthe e implemented a proof-of-concept (POC) mobile test-bed
job mapping. If the controller can successfully map the job for evaluating the proposed framework.

the identified devices, the controller will continue to thexn

phase. Otherwise, the controller will continue the seamtil u
it finds sufficient devices to take the job. 1) Hardware: Figure 8 illustrates the POC test-bed. It has

In the next phase, the controller builds ODAPs accordirfyy iRobot Create as the base for mobility. It communicates
to the job mapping. For each device, the controller locatéfyfough a serial port to a Dell Inspiron netbook running Fedo
the task modules for the assigned tasks and the spec#ic The netbook is also connected to two MICAz motes
device type, and then generates the ODAP using the ODAgNIng TinyOS through another two serial ports. One mote
framework. Then, the controller disseminates the ODAP ¢o t#§ Programmed to listening to the participating motes ared th
device. Upon receiving the new ODAP, the device reloads @ther is to disseminate ODAPs to the selected devices.
reprograms itself with the ODAP, and then runs the assigned!he netbook runs the operations. It takes in all of the inputs

E VALUATION

A. Implementation

tasks. from the robot and the motes. It directs the movement of the
) Create. When the Create moves, the listening mote detects
B. Task Modules for Devices other devices. Upon getting a list of devices, the netbook

Because different devices may be utilized, the controlleomputes the job mapping and generates the ODAPs. Then,
group possible devices into categories according theid-hathe netbook moves to the selected devices and disseminates
ware and software architectures. For each device categdig ODAPs to them using the disseminating mote.

T1

O Eharen e e

(a) ODAP-0 (b) Job (ODAP-]) (c.1) ODAP-1 (¢.2) ODAP-2

ooy ooy
@@@

IS
(=)

Code Size (KB)
o W
o o

—_
(=]

(¢.3) ODAP-3 (c.4) ODAP-4 (c.5) ODAP-5
0
Fig. 9. ODAPs in Experiments 00 OJ O1 02 03 04 05
ODApps
2) Software: The test-bed modified Deluge for dissemi- Fig. 10. Code Memory Used by the ODAPs
nating ODAPs. Deluge is the code distribution component o
in TinyOS. But, it disseminates programs over a multi-hop Ll m
wireless network to all devices [17]. For the purposes of the =)
on-demand computing system, it is desired that each ODAP is & 0s |
distributed to only one device as opposed to every devidesan t ;§ ’
network. This enables the controller to disseminate difier g
ODAPs to different devices in the network. 8 04y
B. Experimental Settings 0

00 0J 01 02 03 04 05
We conducted a variety of experiments with the test-bed. ODApps

The job of the experiments is to monitor a target. The

workflow of the job itself is in Figure 9(b). As discussed in

Section IV-A, the workflow was created without considering

the actual implementation, but focused on the tasks of te jo ¢4 the communication motes that only forward data. ODAP-
In particular, the tasks of the job are monitoring (T1) an§

: ,) .2 is for the motes that sense only. ODAP-3 is for the motes
processing (T2)_. In expenmen?s, T1 was d_efmed as Sensititht sense and forward data. ODAP-4 is for the mote that only
and T2 was defined as av_eragmg the sensing data. averages the sensing data. ODAP-5 is for the mote that can

We assume the target is far away. Thereby, a network dgnse average and forward data.

needed for delivering data. We also assume we do not KNnOWrhase ODAPs are disseminated to the selected motes.

in advance what devices around the target can be used f{ilioaq of asking the motes to route by themselves, these

the job and what devices can be used to make a networkd@aps are configured with proper next-hop addresses for
deliver the monitor data back to the monitor center. We do nf?)trwarding data. We measured and compared the computing
program the sensors for this job in advance either, since Weyo\ rces and communication overheads after the ODAPs are
assume the sensors were deployed before the job OCCUTS. denioyed in the motes. Note that the process of creating,
We deploy several MICAz motes to emulate deviceSympiling and disseminating ODAPs is a one-time process
that have different functionality. In experiments, we S@t U gach experiment. The cost and performance of the process
some MICAz motes with sensors and the others withoy, not affect the job, and thus are not included in evaluation
Because the network is not a part of the job's work- 1y computational OverheadThese ODAPs were compiled
flow, the COM tasks will be assigned to some moteg, studying their resource requirements. Figures 10 and 11
to form an on-demand ad hoc network. When the cogpqy their code size and data size. All the results are cazdpar
troller roams, it detects the motes and disseminates the jgb the ODAP-0, because it does not carry any task and
A video demonstration of the experiments is available a§ opapPs shall have the code of ODAP-0. The table also
http://www.youtube.com/watch?v=JaoTun-ux7o. shows the increment in code and data due to the assigned
tasks. Although the ODAPs were created from a set of code
components, the resulting code size and data size are not a
For comparison, we enumerate all possible ODAPs resultisgnple summation of the code components due to optimization
from the job mapping in Figure 9 and include two baselin@ compilation.
ODAPs as well. One baseline is the ODAP-0 in 9(a), which The code components in the experiments include the loading
has only the device-plane components. As discussed indBectinodule, the distribution module, the configuration module,
VI-A, ODAP-O0 shall run without any tasks. The other baselinthe COM modules $end and Recy, the sensing module
is the ODAP-J in 9(b), which is for a hypothetical scenari(Ser), and the average moduld&yg. Among these modules,
where one device can accomplish the whole job. Other than the average module and the configuration module have the
two baseline ODAPs, the other five ODAPs in Figure 9(c.Ipinimum amount of code. Meanwhile, the COM modules
through (c.5) are possible ODAPs assigned to motes. ODARHare the radio and communication code with the distributio

Fig. 11. Data Memory Used by the ODAPs

C. Experimental Results

@_). @ basc Qsense @average Qforward 40 1—};op I:I

2-hop EEEE
30 [3-hop =

©2>01>Ea>e 02>03>E3e

Delay (ms)
[*)
S

(b.3) (b.4)
10
02>0rgire 02>03>E3>e 0
(c3) (c.4) a b.lclb2c2b3c3bdcd

_) Sensor Networks
Fig. 12. Sensor Networks with Deployed ODAPs

Fig. 13. Delay

module. Therefore, the code and data sizes of ODAP-J, ODAP-
2, ODAP-3 and ODAP-5 are similar because they all have the ACKNOWLEDGMENT

sensing module. In contrast, ODAP-0, ODAP-1 and ODAP-4 This research is funded by NSF award #1156712 that is
have similar but smaller code and data size, because theycdefunded by the DoD and by NSF award #1149397.

not have the sensing module.

2) Communication OverheadBecause the job is split and

disseminated to different devices, executing ODAPs incur@] G. Huerta-Canepa and D. Lee, “A virtual cloud computimgyider for

. . . . mobile devices,” irProc. of ACM Workshop on Mobile Cloud Computing
communication overhead to the job. To study the communi- Services 2010, pp. 1-6.

cation overhead, the ODAPs in Figure 9 were deployed t@] M. Satyanarayanan, “Mobile computing: the next decaite,Proc. of

sensors to form a variety of experimental sensor networks ags] QCM_IWOFKSEOPCPH Mobile dC|$Ug gﬂmqu\i?g_ SerVig@ig- ’
. Milluzzo, R. Caceres, an -k en, Ision: mClgudcomputing
illustrated in Flgure 12 to accomp“Sh the JOb' The JOb itsel on clouds of mobile devices,” iRroc. of the ACM workshop on Mobile

(in Figure 12(a)) is used as the baseline that simply senses cloud computing and service2012, pp. 9—14.

and sends data to a base station. The code deployed to e&hB.-G. Chun and P. Maniafis, "Augmented smartphone apfibns
through clone cloud execution,” iRroc. of Usenix HotOS2009.

mote Is mgrked_m&dg its circle. The motes in gray Wll_l Sens_e[S] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. AlonsdCalling the
the mote in lattice will average data, and the motes in white " cloud: enabling mobile phones as interfaces to cloud atdies,” in
will forward data. Proc. of ACM/IFIP/USENIX International Conference on Migldare

. 2009, pp. 83-102.
Because more hops are needed to deliver data, extra delqél]s M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davidse ‘Tase for

are incurred with the deployed ODAPs. Figure 13 shows VM-Based Cloudlets in Mobile Computing/EEE Pervasive Comput-
the delays in the experimental sensor networks. The delaé ing, vol. 8, no. 4, pp. 14-23, 2009.
e

df h h h he b E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, @rdii,
were measured from when the motes sense to when the R. Chandra, and P. Bahl, “MAUI: making smartphones last éongith

station receives the data. The maximum hop number is three in code offload,” inProc. of ACM MobiSys2010, pp. 49-62.

experiments for the networks of Figure 13(b.3), (b.4),Xard [8] B.-G. Chun and P. Maniatis, “Dynamically partitioningpgications
P 9 () ()X between weak devices and clouds,Froc. of ACM Workshop on Mobile

(c.4). Compared with the _baseline, the 1-hop delay is around cig,q Computing Services: Social Networks and Bey@do.
13.9ms and almost same in all networks. The 2-hop networkg] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, ‘w8 an

add an extra delay of abo@t2ms, and the 3-hop networks Elastic Application Model for Augmenting the Computing Gaflities
of Mobile Devices with Cloud Computing,JJournal of Mobile Networks

add an extra delay of abouB.0ms. Hence, the additional and Applications vol. 16, no. 3, pp. 270-284, 2011.

delay due to multiple hops is proportional to the number ¢fo] H. Eom, P. St Juste, R. Figueiredo, O. Tickoo, R. llikkand R. lyer,
hOpS which is reasonable. “SNARF: a social networking-inspired accelerator remgfimmework,”
’ in Proc. of the Workshop on Mobile Cloud Computi2§12, pp. 29-34.
[11] P. Bahl, R. Y. Han, L. E. Li, and M. Satyanarayanan, “Adeiag the
IX. CONCLUSION state of mobile cloud computing,” iRroc. of the ACM workshop on
Mobile cloud computing and service2012, pp. 21-28.

; _ ;] M. Guirguis, R. Ogden, Z. Song, S. Thapa, and Q. Gu, “Can Melp
This paper presented a new on-demand computing fran[r'k? Me Run These Code Segments on Your Mobile Device?Piac. of

work that generates mobile programs on-the-fly according |ggg Globecom2011.
to the needs of emerging jobs and the capabilities of tfi] C. Fok, A. Petz, D. Stovall, N. Paine, C. Julien, and Sshwanath,

available mobile devices. The paper modeled a job as a work- ‘Pharos: A Testbed for Mobile Cyber-Physical Systemigth. Report
pap J TR-ARISE, University of Texas at Aust#D11.

flow abs.traction and formU|at?d the Pr(?ble_m of job mappings) v. wu and A. Rowe, “Logic-Based Programming for WireeSensor-
and aSS|gnment as a constraint Optlmlzatlon one. The paper Activator Networks,” inProc. of IEEE/ACM ICCPS2011, pp. 163-173.

provided a new programming framework that manages tﬁlé] R. L. Rardin, Optimization in Operations Research Prentice Hall,
.)) . 7.

code modules fo_r a diverse set of d_ewces and builds mobilg) “Tinyos,” http:/mww.tinyos.net.

programs according to the task assignments and the types$1af J. W. Hui and D. Culler, “The dynamic behavior of a datasgimination

devices. The conducted experiments in our test-bed validat ~ Protocol for network programming at scale,” Rroc. of ACM SenSys

S 2004, pp. 81-94.
and demonstrated the feasibility of the proposed on-demand
computing framework.

REFERENCES

